Displaying similar documents to “Hodge-Tate and de Rham representations in the imperfect residue field case”

On a sequence formed by iterating a divisor operator

Bellaouar Djamel, Boudaoud Abdelmadjid, Özen Özer (2019)

Czechoslovak Mathematical Journal

Similarity:

Let be the set of positive integers and let s . We denote by d s the arithmetic function given by d s ( n ) = ( d ( n ) ) s , where d ( n ) is the number of positive divisors of n . Moreover, for every , m we denote by δ s , , m ( n ) the sequence d s ( d s ( ... d s ( d s ( n ) + ) + ... ) + ) m -times = d s ( n ) for m = 1 , d s ( d s ( n ) + ) for m = 2 , d s ( d s ( d s ( n ) + ) + ) for m = 3 , We present classical and nonclassical notes on the sequence ( δ s , , m ( n ) ) m 1 , where , n , s are understood as parameters.

2-Cohomology of semi-simple simply connected group-schemes over curves defined over p -adic fields

Jean-Claude Douai (2013)

Journal de Théorie des Nombres de Bordeaux

Similarity:

Let X be a proper, smooth, geometrically connected curve over a p -adic field k . Lichtenbaum proved that there exists a perfect duality: Br ( X ) × Pic ( X ) / between the Brauer and the Picard group of X , from which he deduced the existence of an injection of Br ( X ) in P X Br ( k P ) where P X and k P denotes the residual field of the point P . The aim of this paper is to prove that if G = G ˜ is an X e t - scheme of semi-simple simply connected groups (s.s.s.c groups), then we can deduce from Lichtenbaum’s results...

On Kneser solutions of the n -th order nonlinear differential inclusions

Martina Pavlačková (2019)

Czechoslovak Mathematical Journal

Similarity:

The paper deals with the existence of a Kneser solution of the n -th order nonlinear differential inclusion x ( n ) ( t ) - A 1 ( t , x ( t ) , ... , x ( n - 1 ) ( t ) ) x ( n - 1 ) ( t ) - ... - A n ( t , x ( t ) , ... , x ( n - 1 ) ( t ) ) x ( t ) for a.a. t [ a , ) , where a ( 0 , ) , and A i : [ a , ) × n , i = 1 , ... , n , are upper-Carathéodory mappings. The derived result is finally illustrated by the third order Kneser problem.

Sobolev versus Hölder local minimizers and existence of multiple solutions for a singular quasilinear equation

Jacques Giacomoni, Ian Schindler, Peter Takáč (2007)

Annali della Scuola Normale Superiore di Pisa - Classe di Scienze

Similarity:

We investigate the following quasilinear and singular problem, t o 2 . 7 c m - Δ p u = λ u δ + u q in Ω ; u | Ω = 0 , u > 0 in Ω , t o 2 . 7 c m (P) where Ω is an open bounded domain with smooth boundary, 1 < p < , p - 1 < q p * - 1 , λ > 0 , and 0 < δ < 1 . As usual, p * = N p N - p if 1 < p < N , p * ( p , ) is arbitrarily large if p = N , and p * = if p > N . We employ variational methods in order to show the existence of at least two distinct (positive) solutions of problem (P) in W 0 1 , p ( Ω ) . While following an approach due to Ambrosetti-Brezis-Cerami, we need to prove two new results of separate interest: a strong comparison principle...

Traceability in { K 1 , 4 , K 1 , 4 + e } -free graphs

Wei Zheng, Ligong Wang (2019)

Czechoslovak Mathematical Journal

Similarity:

A graph G is called { H 1 , H 2 , , H k } -free if G contains no induced subgraph isomorphic to any graph H i , 1 i k . We define σ k = min i = 1 k d ( v i ) : { v 1 , , v k } is an independent set of vertices in G . In this paper, we prove that (1) if G is a connected { K 1 , 4 , K 1 , 4 + e } -free graph of order n and σ 3 ( G ) n - 1 , then G is traceable, (2) if G is a 2-connected { K 1 , 4 , K 1 , 4 + e } -free graph of order n and | N ( x 1 ) N ( x 2 ) | + | N ( y 1 ) N ( y 2 ) | n - 1 for any two distinct pairs of non-adjacent vertices { x 1 , x 2 } , { y 1 , y 2 } of G , then G is traceable, i.e., G has a Hamilton path, where K 1 , 4 + e is a graph obtained by joining a pair of non-adjacent vertices in a K 1 , 4 .

The tangent function and power residues modulo primes

Zhi-Wei Sun (2023)

Czechoslovak Mathematical Journal

Similarity:

Let p be an odd prime, and let a be an integer not divisible by p . When m is a positive integer with p 1 ( mod 2 m ) and 2 is an m th power residue modulo p , we determine the value of the product k R m ( p ) ( 1 + tan ( π a k / p ) ) , where R m ( p ) = { 0 < k < p : k is an m th power residue modulo p } . In particular, if p = x 2 + 64 y 2 with x , y , then k R 4 ( p ) 1 + tan π a k p = ( - 1 ) y ( - 2 ) ( p - 1 ) / 8 .

Persistence of Coron’s solution in nearly critical problems

Monica Musso, Angela Pistoia (2007)

Annali della Scuola Normale Superiore di Pisa - Classe di Scienze

Similarity:

We consider the problem - Δ u = u N + 2 N - 2 + λ in Ω ε ω , u &gt; 0 in Ω ε ω , u = 0 on Ω ε ω , where Ω and ω are smooth bounded domains in N , N 3 , ε &gt; 0 and λ . We prove that if the size of the hole ε goes to zero and if, simultaneously, the parameter λ goes to zero at the appropriate rate, then the problem has a solution which blows up at the origin.

Subclasses of typically real functions determined by some modular inequalities

Leopold Koczan, Katarzyna Trąbka-Więcław (2010)

Annales Universitatis Mariae Curie-Sklodowska, sectio A – Mathematica

Similarity:

Let T be the family of all typically real functions, i.e. functions that are analytic in the unit disk Δ : = { z : | z | < 1 } , normalized by f ( 0 ) = f ' ( 0 ) - 1 = 0 and such that Im z Im f ( z ) 0 for z Δ . Moreover, let us denote: T ( 2 ) : = { f T : f ( z ) = - f ( - z ) for z Δ } and T M , g : = { f T : f M g in Δ } , where M > 1 , g T S and S consists of all analytic functions, normalized and univalent in Δ .We investigate  classes in which the subordination is replaced with the majorization and the function g is typically real but does not necessarily univalent, i.e. classes { f T : f M g in Δ } , where M > 1 , g T , which we denote...

On behavior of solutions to a chemotaxis system with a nonlinear sensitivity function

Senba, Takasi, Fujie, Kentarou

Similarity:

In this paper, we consider solutions to the following chemotaxis system with general sensitivity τ u t = Δ u - · ( u χ ( v ) ) in Ω × ( 0 , ) , η v t = Δ v - v + u in Ω × ( 0 , ) , u ν = u ν = 0 on Ω × ( 0 , ) . Here, τ and η are positive constants, χ is a smooth function on ( 0 , ) satisfying χ ' ( · ) > 0 and Ω is a bounded domain of 𝐑 n ( n 2 ). It is well known that the chemotaxis system with direct sensitivity ( χ ( v ) = χ 0 v , χ 0 > 0 ) has blowup solutions in the case where n 2 . On the other hand, in the case where χ ( v ) = χ 0 log v with 0 < χ 0 1 , any solution to the system exists globally in time and is bounded. We present a sufficient condition for the boundedness...

Positive solutions for concave-convex elliptic problems involving p ( x ) -Laplacian

Makkia Dammak, Abir Amor Ben Ali, Said Taarabti (2022)

Mathematica Bohemica

Similarity:

We study the existence and nonexistence of positive solutions of the nonlinear equation - Δ p ( x ) u = λ k ( x ) u q ± h ( x ) u r in Ω , u = 0 on Ω where Ω N , N 2 , is a regular bounded open domain in N and the p ( x ) -Laplacian Δ p ( x ) u : = div ( | u | p ( x ) - 2 u ) is introduced for a continuous function p ( x ) > 1 defined on Ω . The positive parameter λ induces the bifurcation phenomena. The study of the equation (Q) needs generalized Lebesgue and Sobolev spaces. In this paper, under suitable assumptions, we show that some variational methods still work. We use them to prove the existence of positive...

On the de Rham and p -adic realizations of the elliptic polylogarithm for CM elliptic curves

Kenichi Bannai, Shinichi Kobayashi, Takeshi Tsuji (2010)

Annales scientifiques de l'École Normale Supérieure

Similarity:

In this paper, we give an explicit description of the de Rham and p -adic polylogarithms for elliptic curves using the Kronecker theta function. In particular, consider an elliptic curve E defined over an imaginary quadratic field 𝕂 with complex multiplication by the full ring of integers 𝒪 𝕂 of 𝕂 . Note that our condition implies that 𝕂 has class number one. Assume in addition that E has good reduction above a prime p 5 unramified in 𝒪 𝕂 . In this case, we prove that the specializations of the...

Iwasawa theory for symmetric powers of CM modular forms at non-ordinary primes

Robert Harron, Antonio Lei (2014)

Journal de Théorie des Nombres de Bordeaux

Similarity:

Let f be a cuspidal newform with complex multiplication (CM) and let p be an odd prime at which f is non-ordinary. We construct admissible p -adic L -functions for the symmetric powers of f , thus verifying conjectures of Dabrowski and Panchishkin in this special case. We combine this with recent work of Benois to prove the trivial zero conjecture in this setting. We also construct “mixed” plus and minus p -adic L -functions and prove an analogue of Pollack’s decomposition of the admissible...

Lifting the field of norms

Laurent Berger (2014)

Journal de l’École polytechnique — Mathématiques

Similarity:

Let K be a finite extension of Q p . The field of norms of a p -adic Lie extension K / K is a local field of characteristic p which comes equipped with an action of Gal ( K / K ) . When can we lift this action to characteristic 0 , along with a compatible Frobenius map? In this note, we formulate precisely this question, explain its relevance to the theory of ( ϕ , Γ ) -modules, and give a condition for the existence of certain types of lifts.

Modular symbols, Eisenstein series, and congruences

Jay Heumann, Vinayak Vatsal (2014)

Journal de Théorie des Nombres de Bordeaux

Similarity:

Let E and f be an Eisenstein series and a cusp form, respectively, of the same weight k 2 and of the same level N , both eigenfunctions of the Hecke operators, and both normalized so that a 1 ( f ) = a 1 ( E ) = 1 . The main result we prove is that when E and f are congruent mod a prime 𝔭 (which we take in this paper to be a prime of ¯ lying over a rational prime p &gt; 2 ), the algebraic parts of the special values L ( E , χ , j ) and L ( f , χ , j ) satisfy congruences mod the same prime. More explicitly, we prove that, under certain conditions, ...