Fractal representation of the attractive lamination of an automorphism of the free group
Pierre Arnoux[1]; Valérie Berthé[2]; Arnaud Hilion[3]; Anne Siegel[4]
- [1] IML-UMR 6206 163 avenue de Luminy Case 907 13288 Marseille cedex 9 (France)
- [2] Université de Montpellier II LIRMM-CNRS UMR 5506 161 rue Ada 34392 Montpellier cedex 5 (France)
- [3] Université Aix-Marseille III LATP Avenue de l’escadrille Normandie-Niémen Case A 13397 Marseille cedex 20 (France)
- [4] IRISA-CNRS Campus de Beaulieu 35042 Rennes cedex (France)
Annales de l’institut Fourier (2006)
- Volume: 56, Issue: 7, page 2161-2212
- ISSN: 0373-0956
Access Full Article
topAbstract
topHow to cite
topArnoux, Pierre, et al. "Fractal representation of the attractive lamination of an automorphism of the free group." Annales de l’institut Fourier 56.7 (2006): 2161-2212. <http://eudml.org/doc/10201>.
@article{Arnoux2006,
abstract = {In this paper, we extend to automorphisms of free groups some results and constructions that classically hold for morphisms of the free monoid, i.e., the so-called substitutions. A geometric representation of the attractive lamination of a class of automorphisms of the free group (irreducible with irreducible powers (iwip) automorphisms) is given in the case where the dilation coefficient of the automorphism is a unit Pisot number. The shift map associated with the attractive symbolic lamination is, in this case, proved to be measure-theoretically isomorphic to a domain exchange on a self-similar Euclidean compact set. This set is called the central tile of the automorphism, and is inspired by Rauzy fractals associated with Pisot primitive substitutions. The central tile admits some specific symmetries, and is conjectured under the Pisot hypothesis to be a fundamental domain for a toral translation.},
affiliation = {IML-UMR 6206 163 avenue de Luminy Case 907 13288 Marseille cedex 9 (France); Université de Montpellier II LIRMM-CNRS UMR 5506 161 rue Ada 34392 Montpellier cedex 5 (France); Université Aix-Marseille III LATP Avenue de l’escadrille Normandie-Niémen Case A 13397 Marseille cedex 20 (France); IRISA-CNRS Campus de Beaulieu 35042 Rennes cedex (France)},
author = {Arnoux, Pierre, Berthé, Valérie, Hilion, Arnaud, Siegel, Anne},
journal = {Annales de l’institut Fourier},
keywords = {Free group automorphism; attractive lamination; substitution; symbolic $\quad $ dynamics; self-similarity; Pisot number; free group automorphisms; attractive laminations; substitutions; symbolic dynamics; Pisot numbers; free monoids; automorphisms with irreducible powers automorphisms; shift maps},
language = {eng},
number = {7},
pages = {2161-2212},
publisher = {Association des Annales de l’institut Fourier},
title = {Fractal representation of the attractive lamination of an automorphism of the free group},
url = {http://eudml.org/doc/10201},
volume = {56},
year = {2006},
}
TY - JOUR
AU - Arnoux, Pierre
AU - Berthé, Valérie
AU - Hilion, Arnaud
AU - Siegel, Anne
TI - Fractal representation of the attractive lamination of an automorphism of the free group
JO - Annales de l’institut Fourier
PY - 2006
PB - Association des Annales de l’institut Fourier
VL - 56
IS - 7
SP - 2161
EP - 2212
AB - In this paper, we extend to automorphisms of free groups some results and constructions that classically hold for morphisms of the free monoid, i.e., the so-called substitutions. A geometric representation of the attractive lamination of a class of automorphisms of the free group (irreducible with irreducible powers (iwip) automorphisms) is given in the case where the dilation coefficient of the automorphism is a unit Pisot number. The shift map associated with the attractive symbolic lamination is, in this case, proved to be measure-theoretically isomorphic to a domain exchange on a self-similar Euclidean compact set. This set is called the central tile of the automorphism, and is inspired by Rauzy fractals associated with Pisot primitive substitutions. The central tile admits some specific symmetries, and is conjectured under the Pisot hypothesis to be a fundamental domain for a toral translation.
LA - eng
KW - Free group automorphism; attractive lamination; substitution; symbolic $\quad $ dynamics; self-similarity; Pisot number; free group automorphisms; attractive laminations; substitutions; symbolic dynamics; Pisot numbers; free monoids; automorphisms with irreducible powers automorphisms; shift maps
UR - http://eudml.org/doc/10201
ER -
References
top- S. Akiyama, Pisot numbers and greedy algorithm, Number theory (Eger, 1996) (1998), 9-21, de Gruyter, Berlin Zbl0919.11063MR1628829
- S. Akiyama, Self affine tiling and Pisot numeration system, Number theory and its applications (Kyoto, 1997) 2 (1999), 7-17, Kluwer Acad. Publ., Dordrecht Zbl0999.11065MR1738803
- S. Akiyama, Cubic Pisot units with finite beta expansions, Algebraic number theory and Diophantine analysis (Graz, 1998) (2000), 11-26, de Gruyter, Berlin Zbl1001.11038MR1770451
- S. Akiyama, T. Sadahiro, A self-similar tiling generated by the minimal Pisot number, Proceedings of the 13th Czech and Slovak International Conference on Number Theory (Ostravice, 1997) 6 (1998), 9-26 Zbl1024.11066MR1822510
- P. Arnoux, Échanges d’intervalles et flots sur les surfaces, Monog. Enseign. Math. 29 (1981), 5-38 Zbl0471.28014MR609891
- P. Arnoux, V. Berthé, S. Ito, Discrete planes, -actions, Jacobi-Perron algorithm and substitutions, Ann. Inst. Fourier (Grenoble) 52 (2002), 305-349 Zbl1017.11006MR1906478
- P. Arnoux, V. Berthé, A. Siegel, Two-dimensional iterated morphisms and discrete planes, Theoret. Comput. Sci. 319 (2004), 145-176 Zbl1068.37004MR2074952
- P. Arnoux, M. Furukado, E. O. Harriss, S. Ito, Algebraic numbers and free group automorphisms, Preprint (2005) Zbl1254.37015
- P. Arnoux, S. Ito, Pisot substitutions and Rauzy fractals, Bull. Belg. Math. Soc. Simon Stevin 8 (2001), 181-207 Zbl1007.37001MR1838930
- M. Barge, B. Diamond, Coincidence for substitutions of Pisot type, Bull. Soc. Math. France 130 (2002), 619-626 Zbl1028.37008MR1947456
- M. Barge, J. Kwapisz, Geometric theory of unimodular Pisot substitution Zbl1152.37011MR2262174
- V. Berthé, A. Siegel, Purely periodic -expansions in the Pisot non-unit case, (2005) Zbl1197.11139
- V. Berthé, A. Siegel, Tilings associated with beta-numeration and substitutions, INTEGERS (Electronic Journal of Combinatorial Number Theory) 5 (2005) Zbl1139.37008MR2191748
- M. Bestvina, M. Feighn, M. Handel, Laminations, trees, and irreducible automorphisms of free groups, GAFA 7 (1997), 215-244 Zbl0884.57002MR1445386
- M. Bestvina, M. Feighn, M. Handel, The Tits alternative for Out(), I: Dynamics of exponentially growing automorphisms, Ann. Math. 151 (2000), 517-623 Zbl0984.20025MR1765705
- M. Bestvina, M. Handel, Train tracks for surface homeomorphisms, Topology 34 (1995), 109-140 Zbl0837.57010MR1308491
- M. Betsvina, M. Handel, Train tracks and automorphisms of free groups, Ann. Math. 135 (1992), 1-51 Zbl0757.57004MR1147956
- V. Canterini, A. Siegel, Automate des préfixes-suffixes associé à une substitution primitive, J. Théor. Nombres Bordeaux 13 (2001), 353-369 Zbl1071.37011MR1879663
- V. Canterini, A. Siegel, Geometric representation of substitutions of Pisot type, Trans. Amer. Math. Soc. 353 (2001), 5121-5144 Zbl1142.37302MR1852097
- D. Cooper, Automorphisms of free groups have finitely generated fixed point sets, J. Algebra 111 (1987), 453-456 Zbl0628.20029MR916179
- M. Coornaert, T. Delzant, A. Papadopoulos, Géométrie et théorie des groupes, 1441 (1990), Springer Verlag, Berlin Zbl0727.20018MR1075994
- T. Coulbois, A. Hilion, M. Lustig, -trees and laminations for free groups, (2006) Zbl1197.20019
- J.-M. Dumont, A. Thomas, Systèmes de numération et fonctions fractales relatifs aux substitutions, Theoret. Comput. Sci. 65 (1989), 153-169 Zbl0679.10010MR1020484
- J.-M. Dumont, A. Thomas, Digital sum moments and substitutions, Acta Arith. 64 (1993), 205-225 Zbl0774.11041MR1225425
- H. Ei, S. Ito, Tilings for some non-irreducible Pisot substitutions, Discrete Mathematics and Theoretical Computer Science 7 (2005), 81-122 Zbl1153.37323MR2164061
- Sur les groupes hyperboliques d’après Mikhael Gromov, 83 (1990), GhysE.E., Boston Zbl0731.20025
- M. Gromov, Hyperbolic groups, Essays in group theory 8 (1987), 75-263, Springer-Verlag Zbl0634.20015MR919829
- C. Holton, L. Q. Zamboni, Geometric realizations of substitutions, Bull. Soc. Math. France 126 (1998), 149-179 Zbl0931.11004MR1675970
- S. Ito, M. Kimura, On Rauzy fractal, Japan J. Indust. Appl. Math. 8 (1991), 461-486 Zbl0734.28010MR1137652
- S. Ito, M. Ohtsuki, Modified Jacobi-Perron algorithm and generating Markov partitions for special hyperbolic toral automorphisms, Tokyo J. Math. 16 (1993), 441-472 Zbl0805.11056MR1247666
- S. Ito, H. Rao, Atomic surfaces, tilings and coincidence I. Irreducible case, (2006) Zbl1143.37013MR2254640
- J. C. Lagarias, Y. Wang, Substitution Delone sets, Discrete Comput. Geom. 29 (2003), 175-209 Zbl1037.52017MR1957227
- D. Lind, B. Marcus, An introduction to symbolic dynamics and coding, (1995), Cambridge University Press, Cambridge Zbl1106.37301MR1369092
- M. Lothaire, Algebraic combinatorics on words, 90 (2002), Cambridge University Press Zbl1001.68093MR1905123
- M. Lothaire, Applied combinatorics on words, 105 (2005), Cambridge University Press Zbl1133.68067MR2165687
- W. Massey, Algebraic topology: an introduction, 56 (1984), Springer, New York Zbl0457.55001MR448331
- R. D. Mauldin, S. C. Williams, Hausdorff dimension in graph directed constructions, Trans. Amer. Math. Soc. 309 (1988), 811-829 Zbl0706.28007MR961615
- A. Messaoudi, Propriétés arithmétiques et dynamiques du fractal de Rauzy, J. Théor. Nombres Bordeaux 10 (1998), 135-162 Zbl0918.11048MR1827290
- A. Messaoudi, Frontière du fractal de Rauzy et système de numération complexe, Acta Arith. 95 (2000), 195-224 Zbl0968.28005MR1793161
- B. Praggastis, Numeration systems and Markov partitions from self-similar tilings, Trans. Amer. Math. Soc. 351 (1999), 3315-3349 Zbl0984.11008MR1615950
- N. Pytheas Fogg, Substitutions in dynamics, arithmetics and combinatorics, 1794 (2002), Springer-Verlag, Berlin Zbl1014.11015MR1970385
- M. Queffélec, Substitution dynamical systems—spectral analysis, (1987), Lecture Notes in Mathematics, 1294. Springer-Verlag, Berlin Zbl0642.28013MR924156
- G. Rauzy, Nombres algébriques et substitutions, Bull. Soc. Math. France 110 (1982), 147-178 Zbl0522.10032MR667748
- Y. Sano, P. Arnoux, S. Ito, Higher dimensional extensions of substitutions and their dual maps, J. Anal. Math. 83 (2001), 183-206 Zbl0987.11013MR1828491
- E. Seneta, Non-negative matrices and Markov chains, (1981), Springer-Verlag Zbl0471.60001MR2209438
- A. Siegel, Représentation géométrique, combinatoire et arithmétique des substitutions de type Pisot, (2000)
- A. Siegel, Représentation des systèmes dynamiques substitutifs non unimodulaires, Ergodic Theory Dynam. Systems 23 (2003), 1247-1273 Zbl1052.37009MR1997975
- A. Siegel, Pure discrete spectrum dynamical system and periodic tiling associated with a substitution, Ann. Inst. Fourier (Grenoble) 54 (2004), 288-299 Zbl1083.37009MR2073838
- V. F. Sirvent, Y. Wang, Self-affine tiling via substitution dynamical systems and Rauzy fractals, Pacific J. Math. 206 (2002), 465-485 Zbl1048.37015MR1926787
- B. Tan, Z.-X. Wen, Y. Zhang, The structure of invertible substitutions on a three-letter alphabet, Advances in Applied Mathematics 32 (2004), 736-753 Zbl1082.68092MR2053843
- W. P. Thurston, Groups, tilings and finite state automata, Lectures notes distributed in conjunction with the Colloquium Series (1989)
Citations in EuDML Documents
topNotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.