Fractal representation of the attractive lamination of an automorphism of the free group

Pierre Arnoux[1]; Valérie Berthé[2]; Arnaud Hilion[3]; Anne Siegel[4]

  • [1] IML-UMR 6206 163 avenue de Luminy Case 907 13288 Marseille cedex 9 (France)
  • [2] Université de Montpellier II LIRMM-CNRS UMR 5506 161 rue Ada 34392 Montpellier cedex 5 (France)
  • [3] Université Aix-Marseille III LATP Avenue de l’escadrille Normandie-Niémen Case A 13397 Marseille cedex 20 (France)
  • [4] IRISA-CNRS Campus de Beaulieu 35042 Rennes cedex (France)

Annales de l’institut Fourier (2006)

  • Volume: 56, Issue: 7, page 2161-2212
  • ISSN: 0373-0956

Abstract

top
In this paper, we extend to automorphisms of free groups some results and constructions that classically hold for morphisms of the free monoid, i.e., the so-called substitutions. A geometric representation of the attractive lamination of a class of automorphisms of the free group (irreducible with irreducible powers (iwip) automorphisms) is given in the case where the dilation coefficient of the automorphism is a unit Pisot number. The shift map associated with the attractive symbolic lamination is, in this case, proved to be measure-theoretically isomorphic to a domain exchange on a self-similar Euclidean compact set. This set is called the central tile of the automorphism, and is inspired by Rauzy fractals associated with Pisot primitive substitutions. The central tile admits some specific symmetries, and is conjectured under the Pisot hypothesis to be a fundamental domain for a toral translation.

How to cite

top

Arnoux, Pierre, et al. "Fractal representation of the attractive lamination of an automorphism of the free group." Annales de l’institut Fourier 56.7 (2006): 2161-2212. <http://eudml.org/doc/10201>.

@article{Arnoux2006,
abstract = {In this paper, we extend to automorphisms of free groups some results and constructions that classically hold for morphisms of the free monoid, i.e., the so-called substitutions. A geometric representation of the attractive lamination of a class of automorphisms of the free group (irreducible with irreducible powers (iwip) automorphisms) is given in the case where the dilation coefficient of the automorphism is a unit Pisot number. The shift map associated with the attractive symbolic lamination is, in this case, proved to be measure-theoretically isomorphic to a domain exchange on a self-similar Euclidean compact set. This set is called the central tile of the automorphism, and is inspired by Rauzy fractals associated with Pisot primitive substitutions. The central tile admits some specific symmetries, and is conjectured under the Pisot hypothesis to be a fundamental domain for a toral translation.},
affiliation = {IML-UMR 6206 163 avenue de Luminy Case 907 13288 Marseille cedex 9 (France); Université de Montpellier II LIRMM-CNRS UMR 5506 161 rue Ada 34392 Montpellier cedex 5 (France); Université Aix-Marseille III LATP Avenue de l’escadrille Normandie-Niémen Case A 13397 Marseille cedex 20 (France); IRISA-CNRS Campus de Beaulieu 35042 Rennes cedex (France)},
author = {Arnoux, Pierre, Berthé, Valérie, Hilion, Arnaud, Siegel, Anne},
journal = {Annales de l’institut Fourier},
keywords = {Free group automorphism; attractive lamination; substitution; symbolic $\quad $ dynamics; self-similarity; Pisot number; free group automorphisms; attractive laminations; substitutions; symbolic dynamics; Pisot numbers; free monoids; automorphisms with irreducible powers automorphisms; shift maps},
language = {eng},
number = {7},
pages = {2161-2212},
publisher = {Association des Annales de l’institut Fourier},
title = {Fractal representation of the attractive lamination of an automorphism of the free group},
url = {http://eudml.org/doc/10201},
volume = {56},
year = {2006},
}

TY - JOUR
AU - Arnoux, Pierre
AU - Berthé, Valérie
AU - Hilion, Arnaud
AU - Siegel, Anne
TI - Fractal representation of the attractive lamination of an automorphism of the free group
JO - Annales de l’institut Fourier
PY - 2006
PB - Association des Annales de l’institut Fourier
VL - 56
IS - 7
SP - 2161
EP - 2212
AB - In this paper, we extend to automorphisms of free groups some results and constructions that classically hold for morphisms of the free monoid, i.e., the so-called substitutions. A geometric representation of the attractive lamination of a class of automorphisms of the free group (irreducible with irreducible powers (iwip) automorphisms) is given in the case where the dilation coefficient of the automorphism is a unit Pisot number. The shift map associated with the attractive symbolic lamination is, in this case, proved to be measure-theoretically isomorphic to a domain exchange on a self-similar Euclidean compact set. This set is called the central tile of the automorphism, and is inspired by Rauzy fractals associated with Pisot primitive substitutions. The central tile admits some specific symmetries, and is conjectured under the Pisot hypothesis to be a fundamental domain for a toral translation.
LA - eng
KW - Free group automorphism; attractive lamination; substitution; symbolic $\quad $ dynamics; self-similarity; Pisot number; free group automorphisms; attractive laminations; substitutions; symbolic dynamics; Pisot numbers; free monoids; automorphisms with irreducible powers automorphisms; shift maps
UR - http://eudml.org/doc/10201
ER -

References

top
  1. S. Akiyama, Pisot numbers and greedy algorithm, Number theory (Eger, 1996) (1998), 9-21, de Gruyter, Berlin Zbl0919.11063MR1628829
  2. S. Akiyama, Self affine tiling and Pisot numeration system, Number theory and its applications (Kyoto, 1997) 2 (1999), 7-17, Kluwer Acad. Publ., Dordrecht Zbl0999.11065MR1738803
  3. S. Akiyama, Cubic Pisot units with finite beta expansions, Algebraic number theory and Diophantine analysis (Graz, 1998) (2000), 11-26, de Gruyter, Berlin Zbl1001.11038MR1770451
  4. S. Akiyama, T. Sadahiro, A self-similar tiling generated by the minimal Pisot number, Proceedings of the 13th Czech and Slovak International Conference on Number Theory (Ostravice, 1997) 6 (1998), 9-26 Zbl1024.11066MR1822510
  5. P. Arnoux, Échanges d’intervalles et flots sur les surfaces, Monog. Enseign. Math. 29 (1981), 5-38 Zbl0471.28014MR609891
  6. P. Arnoux, V. Berthé, S. Ito, Discrete planes, 2 -actions, Jacobi-Perron algorithm and substitutions, Ann. Inst. Fourier (Grenoble) 52 (2002), 305-349 Zbl1017.11006MR1906478
  7. P. Arnoux, V. Berthé, A. Siegel, Two-dimensional iterated morphisms and discrete planes, Theoret. Comput. Sci. 319 (2004), 145-176 Zbl1068.37004MR2074952
  8. P. Arnoux, M. Furukado, E. O. Harriss, S. Ito, Algebraic numbers and free group automorphisms, Preprint (2005) Zbl1254.37015
  9. P. Arnoux, S. Ito, Pisot substitutions and Rauzy fractals, Bull. Belg. Math. Soc. Simon Stevin 8 (2001), 181-207 Zbl1007.37001MR1838930
  10. M. Barge, B. Diamond, Coincidence for substitutions of Pisot type, Bull. Soc. Math. France 130 (2002), 619-626 Zbl1028.37008MR1947456
  11. M. Barge, J. Kwapisz, Geometric theory of unimodular Pisot substitution Zbl1152.37011MR2262174
  12. V. Berthé, A. Siegel, Purely periodic β -expansions in the Pisot non-unit case, (2005) Zbl1197.11139
  13. V. Berthé, A. Siegel, Tilings associated with beta-numeration and substitutions, INTEGERS (Electronic Journal of Combinatorial Number Theory) 5 (2005) Zbl1139.37008MR2191748
  14. M. Bestvina, M. Feighn, M. Handel, Laminations, trees, and irreducible automorphisms of free groups, GAFA 7 (1997), 215-244 Zbl0884.57002MR1445386
  15. M. Bestvina, M. Feighn, M. Handel, The Tits alternative for Out( F n ), I: Dynamics of exponentially growing automorphisms, Ann. Math. 151 (2000), 517-623 Zbl0984.20025MR1765705
  16. M. Bestvina, M. Handel, Train tracks for surface homeomorphisms, Topology 34 (1995), 109-140 Zbl0837.57010MR1308491
  17. M. Betsvina, M. Handel, Train tracks and automorphisms of free groups, Ann. Math. 135 (1992), 1-51 Zbl0757.57004MR1147956
  18. V. Canterini, A. Siegel, Automate des préfixes-suffixes associé à une substitution primitive, J. Théor. Nombres Bordeaux 13 (2001), 353-369 Zbl1071.37011MR1879663
  19. V. Canterini, A. Siegel, Geometric representation of substitutions of Pisot type, Trans. Amer. Math. Soc. 353 (2001), 5121-5144 Zbl1142.37302MR1852097
  20. D. Cooper, Automorphisms of free groups have finitely generated fixed point sets, J. Algebra 111 (1987), 453-456 Zbl0628.20029MR916179
  21. M. Coornaert, T. Delzant, A. Papadopoulos, Géométrie et théorie des groupes, 1441 (1990), Springer Verlag, Berlin Zbl0727.20018MR1075994
  22. T. Coulbois, A. Hilion, M. Lustig, -trees and laminations for free groups, (2006) Zbl1197.20019
  23. J.-M. Dumont, A. Thomas, Systèmes de numération et fonctions fractales relatifs aux substitutions, Theoret. Comput. Sci. 65 (1989), 153-169 Zbl0679.10010MR1020484
  24. J.-M. Dumont, A. Thomas, Digital sum moments and substitutions, Acta Arith. 64 (1993), 205-225 Zbl0774.11041MR1225425
  25. H. Ei, S. Ito, Tilings for some non-irreducible Pisot substitutions, Discrete Mathematics and Theoretical Computer Science 7 (2005), 81-122 Zbl1153.37323MR2164061
  26. Sur les groupes hyperboliques d’après Mikhael Gromov, 83 (1990), GhysE.E., Boston Zbl0731.20025
  27. M. Gromov, Hyperbolic groups, Essays in group theory 8 (1987), 75-263, Springer-Verlag Zbl0634.20015MR919829
  28. C. Holton, L. Q. Zamboni, Geometric realizations of substitutions, Bull. Soc. Math. France 126 (1998), 149-179 Zbl0931.11004MR1675970
  29. S. Ito, M. Kimura, On Rauzy fractal, Japan J. Indust. Appl. Math. 8 (1991), 461-486 Zbl0734.28010MR1137652
  30. S. Ito, M. Ohtsuki, Modified Jacobi-Perron algorithm and generating Markov partitions for special hyperbolic toral automorphisms, Tokyo J. Math. 16 (1993), 441-472 Zbl0805.11056MR1247666
  31. S. Ito, H. Rao, Atomic surfaces, tilings and coincidence I. Irreducible case, (2006) Zbl1143.37013MR2254640
  32. J. C. Lagarias, Y. Wang, Substitution Delone sets, Discrete Comput. Geom. 29 (2003), 175-209 Zbl1037.52017MR1957227
  33. D. Lind, B. Marcus, An introduction to symbolic dynamics and coding, (1995), Cambridge University Press, Cambridge Zbl1106.37301MR1369092
  34. M. Lothaire, Algebraic combinatorics on words, 90 (2002), Cambridge University Press Zbl1001.68093MR1905123
  35. M. Lothaire, Applied combinatorics on words, 105 (2005), Cambridge University Press Zbl1133.68067MR2165687
  36. W. Massey, Algebraic topology: an introduction, 56 (1984), Springer, New York Zbl0457.55001MR448331
  37. R. D. Mauldin, S. C. Williams, Hausdorff dimension in graph directed constructions, Trans. Amer. Math. Soc. 309 (1988), 811-829 Zbl0706.28007MR961615
  38. A. Messaoudi, Propriétés arithmétiques et dynamiques du fractal de Rauzy, J. Théor. Nombres Bordeaux 10 (1998), 135-162 Zbl0918.11048MR1827290
  39. A. Messaoudi, Frontière du fractal de Rauzy et système de numération complexe, Acta Arith. 95 (2000), 195-224 Zbl0968.28005MR1793161
  40. B. Praggastis, Numeration systems and Markov partitions from self-similar tilings, Trans. Amer. Math. Soc. 351 (1999), 3315-3349 Zbl0984.11008MR1615950
  41. N. Pytheas Fogg, Substitutions in dynamics, arithmetics and combinatorics, 1794 (2002), Springer-Verlag, Berlin Zbl1014.11015MR1970385
  42. M. Queffélec, Substitution dynamical systems—spectral analysis, (1987), Lecture Notes in Mathematics, 1294. Springer-Verlag, Berlin Zbl0642.28013MR924156
  43. G. Rauzy, Nombres algébriques et substitutions, Bull. Soc. Math. France 110 (1982), 147-178 Zbl0522.10032MR667748
  44. Y. Sano, P. Arnoux, S. Ito, Higher dimensional extensions of substitutions and their dual maps, J. Anal. Math. 83 (2001), 183-206 Zbl0987.11013MR1828491
  45. E. Seneta, Non-negative matrices and Markov chains, (1981), Springer-Verlag Zbl0471.60001MR2209438
  46. A. Siegel, Représentation géométrique, combinatoire et arithmétique des substitutions de type Pisot, (2000) 
  47. A. Siegel, Représentation des systèmes dynamiques substitutifs non unimodulaires, Ergodic Theory Dynam. Systems 23 (2003), 1247-1273 Zbl1052.37009MR1997975
  48. A. Siegel, Pure discrete spectrum dynamical system and periodic tiling associated with a substitution, Ann. Inst. Fourier (Grenoble) 54 (2004), 288-299 Zbl1083.37009MR2073838
  49. V. F. Sirvent, Y. Wang, Self-affine tiling via substitution dynamical systems and Rauzy fractals, Pacific J. Math. 206 (2002), 465-485 Zbl1048.37015MR1926787
  50. B. Tan, Z.-X. Wen, Y. Zhang, The structure of invertible substitutions on a three-letter alphabet, Advances in Applied Mathematics 32 (2004), 736-753 Zbl1082.68092MR2053843
  51. W. P. Thurston, Groups, tilings and finite state automata, Lectures notes distributed in conjunction with the Colloquium Series (1989) 

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.