Page 1

Displaying 1 – 6 of 6

Showing per page

An analytical and numerical approach to a bilateral contact problem with nonmonotone friction

Mikaël Barboteu, Krzysztof Bartosz, Piotr Kalita (2013)

International Journal of Applied Mathematics and Computer Science

We consider a mathematical model which describes the contact between a linearly elastic body and an obstacle, the so-called foundation. The process is static and the contact is bilateral, i.e., there is no loss of contact. The friction is modeled with a nonmotonone law. The purpose of this work is to provide an error estimate for the Galerkin method as well as to present and compare two numerical methods for solving the resulting nonsmooth and nonconvex frictional contact problem. The first approach...

Analysis of a time discretization scheme for a nonstandard viscous Cahn–Hilliard system

Pierluigi Colli, Gianni Gilardi, Pavel Krejčí, Paolo Podio-Guidugli, Jürgen Sprekels (2014)

ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique

In this paper we propose a time discretization of a system of two parabolic equations describing diffusion-driven atom rearrangement in crystalline matter. The equations express the balances of microforces and microenergy; the two phase fields are the order parameter and the chemical potential. The initial and boundary-value problem for the evolutionary system is known to be well posed. Convergence of the discrete scheme to the solution of the continuous problem is proved by a careful development...

Antieigenvalue analysis for continuum mechanics, economics, and number theory

Karl Gustafson (2016)

Special Matrices

My recent book Antieigenvalue Analysis, World-Scientific, 2012, presented the theory of antieigenvalues from its inception in 1966 up to 2010, and its applications within those forty-five years to Numerical Analysis, Wavelets, Statistics, Quantum Mechanics, Finance, and Optimization. Here I am able to offer three further areas of application: Continuum Mechanics, Economics, and Number Theory. In particular, the critical angle of repose in a continuum model of granular materials is shown to be exactly...

On the Plasma-Charge problem

Mario Pulvirenti (2009/2010)

Séminaire Équations aux dérivées partielles

This short report is a review on recent results of S. Caprino, C. Marchioro, E. Miot and the author on the initial value problem associated to the evolution of a continuous distribution of charges (plasma) in presence of a finite number of point charges.

Parallel Adaptive Finite Element Algorithms for Solving the Coupled Electro-diffusion Equations

Yan Xie, Jie Cheng, Benzhuo Lu, Linbo Zhang (2013)

Molecular Based Mathematical Biology

rithms for solving the 3D electro-diffusion equations such as the Poisson-Nernst-Planck equations and the size-modified Poisson-Nernst-Planck equations in simulations of biomolecular systems in ionic liquid. A set of transformation methods based on the generalized Slotboom variables is used to solve the coupled equations. Calculations of the diffusion-reaction rate coefficients, electrostatic potential and ion concentrations for various systems verify the method’s validity and stability. The iterations...

Currently displaying 1 – 6 of 6

Page 1