A geometric derivation of the linear Boltzmann equation for a particle interacting with a Gaussian random field, using a Fock space approach

Sébastien Breteaux[1]

  • [1] IRMAR, UMR-CNRS 6625, Université de Rennes 1, campus de Beaulieu, 35042 Rennes Cedex, France. ENS de Cachan, Antenne de Bretagne, Campus de Ker Lann, Av. R. Schuman, 35170 Bruz, France.

Annales de l’institut Fourier (2014)

  • Volume: 64, Issue: 3, page 1031-1076
  • ISSN: 0373-0956

Abstract

top
In this article the linear Boltzmann equation is derived for a particle interacting with a Gaussian random field, in the weak coupling limit, with renewal in time of the random field. The initial data can be chosen arbitrarily. The proof is geometric and involves coherent states and semi-classical calculus.

How to cite

top

Breteaux, Sébastien. "A geometric derivation of the linear Boltzmann equation for a particle interacting with a Gaussian random field, using a Fock space approach." Annales de l’institut Fourier 64.3 (2014): 1031-1076. <http://eudml.org/doc/275529>.

@article{Breteaux2014,
abstract = {In this article the linear Boltzmann equation is derived for a particle interacting with a Gaussian random field, in the weak coupling limit, with renewal in time of the random field. The initial data can be chosen arbitrarily. The proof is geometric and involves coherent states and semi-classical calculus.},
affiliation = {IRMAR, UMR-CNRS 6625, Université de Rennes 1, campus de Beaulieu, 35042 Rennes Cedex, France. ENS de Cachan, Antenne de Bretagne, Campus de Ker Lann, Av. R. Schuman, 35170 Bruz, France.},
author = {Breteaux, Sébastien},
journal = {Annales de l’institut Fourier},
keywords = {Linear Boltzmann equation; processes in random environments; quantum field theory; coherent states; kinetic theory of gases; linear Boltzmann equation; Fock space; Weyl quantization; Gaussian random field; random potential; renewal of a random field; a priori estimates},
language = {eng},
number = {3},
pages = {1031-1076},
publisher = {Association des Annales de l’institut Fourier},
title = {A geometric derivation of the linear Boltzmann equation for a particle interacting with a Gaussian random field, using a Fock space approach},
url = {http://eudml.org/doc/275529},
volume = {64},
year = {2014},
}

TY - JOUR
AU - Breteaux, Sébastien
TI - A geometric derivation of the linear Boltzmann equation for a particle interacting with a Gaussian random field, using a Fock space approach
JO - Annales de l’institut Fourier
PY - 2014
PB - Association des Annales de l’institut Fourier
VL - 64
IS - 3
SP - 1031
EP - 1076
AB - In this article the linear Boltzmann equation is derived for a particle interacting with a Gaussian random field, in the weak coupling limit, with renewal in time of the random field. The initial data can be chosen arbitrarily. The proof is geometric and involves coherent states and semi-classical calculus.
LA - eng
KW - Linear Boltzmann equation; processes in random environments; quantum field theory; coherent states; kinetic theory of gases; linear Boltzmann equation; Fock space; Weyl quantization; Gaussian random field; random potential; renewal of a random field; a priori estimates
UR - http://eudml.org/doc/275529
ER -

References

top
  1. Zied Ammari, Francis Nier, Mean field limit for bosons and infinite dimensional phase-space analysis, Ann. Henri Poincaré 9 (2008), 1503-1574 Zbl1171.81014MR2465733
  2. Zied Ammari, Francis Nier, Mean field limit for bosons and propagation of Wigner measures, J. Math. Phys. 50 (2009) Zbl1214.81089MR2513969
  3. Stéphane Attal, Alain Joye, Weak coupling and continuous limits for repeated quantum interactions, J. Stat. Phys. 126 (2007), 1241-1283 Zbl1152.82013MR2312948
  4. Stéphane Attal, Yan Pautrat, From repeated to continuous quantum interactions, Ann. Henri Poincaré 7 (2006), 59-104 Zbl1099.81040MR2205464
  5. Guillaume Bal, George Papanicolaou, Leonid Ryzhik, Radiative transport limit for the random Schrödinger equation, Nonlinearity 15 (2002), 513-529 Zbl0999.60061MR1888863
  6. Philippe Bechouche, Frédéric Poupaud, Juan Soler, Quantum transport and Boltzmann operators, J. Stat. Phys. 122 (2006), 417-436 Zbl1149.82338MR2205910
  7. Feliks A. Berezin, The method of second quantization, (1966), Academic Press, New York Zbl0151.44001MR208930
  8. Carlo Boldrighini, Leonid A. Bunimovich, Yakov G. Sinaĭ, On the Boltzmann equation for the Lorentz gas, J. Statist. Phys. 32 (1983), 477-501 Zbl0583.76092MR725107
  9. Ola Bratteli, Derek W. Robinson, Operator algebras and quantum statistical mechanics. 2, (1997), Springer-Verlag, Berlin Zbl0421.46048MR1441540
  10. Nicolas Burq, Mesures semi-classiques et mesures de défaut, Astérisque (1997), Exp. No. 826, 4, 167-195 Zbl0954.35102MR1627111
  11. Thomas Chen, Localization lengths and Boltzmann limit for the Anderson model at small disorders in dimension 3, J. Stat. Phys. 120 (2005), 279-337 Zbl1142.82008MR2165532
  12. Robert Dautray, Jacques-Louis Lions, Analyse mathématique et calcul numérique pour les sciences et les techniques. Tome 1, (1984), Masson, Paris Zbl0664.47003MR792484
  13. Robert Dautray, Jacques-Louis Lions, Analyse mathématique et calcul numérique pour les sciences et les techniques. Tome 3, (1985), Masson, Paris Zbl0642.35001
  14. László Erdős, Manfred Salmhofer, Horng-Tzer Yau, Quantum diffusion of the random Schrödinger evolution in the scaling limit. II. The recollision diagrams, Comm. Math. Phys. 271 (2007), 1-53 Zbl1205.82123MR2283953
  15. László Erdős, Manfred Salmhofer, Horng-Tzer Yau, Quantum diffusion of the random Schrödinger evolution in the scaling limit, Acta Math. 200 (2008), 211-277 Zbl1155.82015MR2413135
  16. László Erdös, Horng-Tzer Yau, Linear Boltzmann equation as the weak coupling limit of a random Schrödinger equation, Comm. Pure Appl. Math. 53 (2000), 667-735 Zbl1028.82010
  17. Gerald B. Folland, Quantum field theory, 149 (2008), American Mathematical Society, Providence, RI Zbl1155.81003MR2436991
  18. Giovanni Gallavotti, Divergences and the Approach to Equilibrium in the Lorentz and the Wind-Tree Models, Phys. Rev. 185 (1969), 308-322 
  19. Patrick Gérard, Mesures semi-classiques et ondes de Bloch, Séminaire sur les Équations aux Dérivées Partielles, 1990–1991 (1991), École Polytech., Palaiseau Zbl0739.35096MR1131589
  20. Patrick Gérard, Microlocal defect measures, Comm. Partial Differential Equations 16 (1991), 1761-1794 Zbl0770.35001MR1135919
  21. Patrick Gérard, Peter A. Markowich, Norbert J. Mauser, Frédéric Poupaud, Homogenization limits and Wigner transforms, Comm. Pure Appl. Math. 50 (1997), 323-379 Zbl0881.35099MR1438151
  22. Patrick Gérard, Peter A. Markowich, Norbert J. Mauser, Frédéric Poupaud, Erratum: “Homogenization limits and Wigner transforms” [Comm. Pure Appl. Math. 50 (1997), no. 4, 323–379; MR1438151 (98d:35020)], Comm. Pure Appl. Math. 53 (2000), 280-281 Zbl0881.35099MR1438151
  23. Jean Ginibre, Giorgio Velo, The classical field limit of scattering theory for nonrelativistic many-boson systems. I, Comm. Math. Phys. 66 (1979), 37-76 Zbl0443.35067MR530915
  24. Jean Ginibre, Giorgio Velo, The classical field limit of scattering theory for nonrelativistic many-boson systems. II, Comm. Math. Phys. 68 (1979), 45-68 Zbl0443.35068MR539736
  25. Jean Ginibre, Giorgio Velo, The classical field limit of nonrelativistic bosons. I. Borel summability for bounded potentials, Ann. Physics 128 (1980), 243-285 Zbl0447.47026MR602197
  26. Jean Ginibre, Giorgio Velo, The classical field limit of nonrelativistic bosons. II. Asymptotic expansions for general potentials, Ann. Inst. H. Poincaré Sect. A (N.S.) 33 (1980), 363-394 Zbl0457.47039MR605198
  27. James Glimm, Arthur Jaffe, Quantum physics, (1987), Springer-Verlag, New York Zbl0461.46051MR887102
  28. Klaus Hepp, The classical limit for quantum mechanical correlation functions, Comm. Math. Phys. 35 (1974), 265-277 MR332046
  29. Ting-Guo Ho, Lawrence J. Landau, A. J. Wilkins, On the weak coupling limit for a Fermi gas in a random potential, Rev. Math. Phys. 5 (1993), 209-298 Zbl0816.46079
  30. Pierre-Louis Lions, Thierry Paul, Sur les mesures de Wigner, Rev. Mat. Iberoamericana 9 (1993), 553-618 Zbl0801.35117MR1251718
  31. André Martinez, An introduction to semiclassical and microlocal analysis, (2002), Springer-Verlag, New York Zbl0994.35003MR1872698
  32. Frédéric Poupaud, Alexis Vasseur, Classical and quantum transport in random media, J. Math. Pures Appl. (9) 82 (2003), 711-748 Zbl1035.82037MR1996779
  33. Michael Reed, Barry Simon, Methods of modern mathematical physics. II. Fourier analysis, self-adjointness, (1975), Academic Press [Harcourt Brace Jovanovich Publishers], New York Zbl0242.46001MR493420
  34. Michael Reed, Barry Simon, Methods of modern mathematical physics. III, (1979), Academic Press [Harcourt Brace Jovanovich Publishers], New York Zbl0405.47007MR529429
  35. Barry Simon, The P ( φ ) 2 Euclidean (quantum) field theory, (1974), Princeton University Press, Princeton, N.J. Zbl1175.81146MR489552
  36. Herbert Spohn, Derivation of the transport equation for electrons moving through random impurities, J. Statist. Phys. 17 (1977), 385-412 Zbl0964.82508MR471824
  37. Herbert Spohn, Kinetic equations from Hamiltonian dynamics: Markovian limits, Rev. Mod. Phys. 52 (1980), 569-615 Zbl0399.60082MR578142

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.