Displaying similar documents to “Covers in p -adic analytic geometry and log covers I: Cospecialization of the ( p ) -tempered fundamental group for a family of curves”

Composite positive integers whose sum of prime factors is prime

Florian Luca, Damon Moodley (2020)

Archivum Mathematicum

Similarity:

In this note, we show that the counting function of the number of composite positive integers n x such that β ( n ) = p n p is a prime is of order of magnitude at least x / ( log x ) 3 and at most x / log x .

Inequalities for Taylor series involving the divisor function

Horst Alzer, Man Kam Kwong (2022)

Czechoslovak Mathematical Journal

Similarity:

Let T ( q ) = k = 1 d ( k ) q k , | q | < 1 , where d ( k ) denotes the number of positive divisors of the natural number k . We present monotonicity properties of functions defined in terms of T . More specifically, we prove that H ( q ) = T ( q ) - log ( 1 - q ) log ( q ) is strictly increasing on ( 0 , 1 ) , while F ( q ) = 1 - q q H ( q ) is strictly decreasing on ( 0 , 1 ) . These results are then applied to obtain various inequalities, one of which states that the double inequality α q 1 - q + log ( 1 - q ) log ( q ) < T ( q ) < β q 1 - q + log ( 1 - q ) log ( q ) , 0 < q < 1 , holds with the best possible constant factors α = γ and β = 1 . Here, γ denotes Euler’s constant. This refines a result of Salem, who...

Libera and Hilbert matrix operator on logarithmically weighted Bergman, Bloch and Hardy-Bloch spaces

Boban Karapetrović (2018)

Czechoslovak Mathematical Journal

Similarity:

We show that if α > 1 , then the logarithmically weighted Bergman space A log α 2 is mapped by the Libera operator into the space A log α - 1 2 , while if α > 2 and 0 < ε α - 2 , then the Hilbert matrix operator H maps A log α 2 into A log α - 2 - ε 2 .We show that the Libera operator maps the logarithmically weighted Bloch space log α , α , into itself, while H maps log α into log α + 1 .In Pavlović’s paper (2016) it is shown that maps the logarithmically weighted Hardy-Bloch space log α 1 , α > 0 , into log α - 1 1 . We show that this result is sharp. We also show that H maps log α 1 , α 0 ,...

The Complete Monotonicity of a Function Studied by Miller and Moskowitz

Horst Alzer (2009)

Bollettino dell'Unione Matematica Italiana

Similarity:

Let S ( x ) = l o g ( 1 + x ) + 0 1 [ 1 - ( 1 + t 2 ) x ] d t log t and F ( x ) = log 2 - S ( x ) ( 0 < x ) . We prove that F is completely monotonic on ( 0 , ) . This complements a result of Miller and Moskowitz (2006), who proved that F is positive and strictly decreasing on ( 0 , ) . The sequence { S ( k ) } ( k = 1 , 2 , ) plays a role in information theory.

Remarks on Ramanujan's inequality concerning the prime counting function

Mehdi Hassani (2021)

Communications in Mathematics

Similarity:

In this paper we investigate Ramanujan’s inequality concerning the prime counting function, asserting that π ( x ) 2 < e x log x π x e for x sufficiently large. First, we study its sharpness by giving full asymptotic expansions of its left and right hand sides expressions. Then, we discuss the structure of Ramanujan’s inequality, by replacing the factor x log x on its right hand side by the factor x log x - h for a given h , and by replacing the numerical factor e by a given positive α . Finally, we introduce and study inequalities...

A direct solver for finite element matrices requiring O ( N log N ) memory places

Vejchodský, Tomáš

Similarity:

We present a method that in certain sense stores the inverse of the stiffness matrix in O ( N log N ) memory places, where N is the number of degrees of freedom and hence the matrix size. The setup of this storage format requires O ( N 3 / 2 ) arithmetic operations. However, once the setup is done, the multiplication of the inverse matrix and a vector can be performed with O ( N log N ) operations. This approach applies to the first order finite element discretization of linear elliptic and parabolic problems in triangular...

On sum-product representations in q

Mei-Chu Chang (2006)

Journal of the European Mathematical Society

Similarity:

The purpose of this paper is to investigate efficient representations of the residue classes modulo q , by performing sum and product set operations starting from a given subset A of q . We consider the case of very small sets A and composite q for which not much seemed known (nontrivial results were recently obtained when q is prime or when log | A | log q ). Roughly speaking we show that all residue classes are obtained from a k -fold sum of an r -fold product set of A , where r log q and log k log q , provided the...

Representation functions with different weights

Quan-Hui Yang (2014)

Colloquium Mathematicae

Similarity:

For any given positive integer k, and any set A of nonnegative integers, let r 1 , k ( A , n ) denote the number of solutions of the equation n = a₁ + ka₂ with a₁,a₂ ∈ A. We prove that if k,l are multiplicatively independent integers, i.e., log k/log l is irrational, then there does not exist any set A ⊆ ℕ such that both r 1 , k ( A , n ) = r 1 , k ( A , n ) and r 1 , l ( A , n ) = r 1 , l ( A , n ) hold for all n ≥ n₀. We also pose a conjecture and two problems for further research.

Some logarithmic function spaces, entropy numbers, applications to spectral theory

Haroske Dorothee

Similarity:

AbstractIn [18] and [19] we have studied compact embeddings of weighted function spaces on ℝⁿ, i d : H q s ( w ( x ) , ) L ( ) , s>0, 1 < q ≤ p< ∞, s-n/q+n/p > 0, with, for example, w ( x ) = x α , α > 0, or w ( x ) = l o g β x , β > 0, and x = ( 2 + | x | ² ) 1 / 2 . We have determined the behaviour of their entropy numbers eₖ(id). Now we are interested in the limiting case 1/q = 1/p + s/n. Let w ( x ) = l o g β x , β > 0. Our results in [18] imply that id cannot be compact for any β > 0, but after replacing the target space Lₚ(ℝⁿ) by a “slightly” larger one, L ( l o g L ) - a ( ) , a...

Some characterizations of the class m ( Ω ) and applications

Hai Mau Le, Hong Xuan Nguyen, Hung Viet Vu (2015)

Annales Polonici Mathematici

Similarity:

We give some characterizations of the class m ( Ω ) and use them to establish a lower estimate for the log canonical threshold of plurisubharmonic functions in this class.

A generalized Kahane-Khinchin inequality

S. Favorov (1998)

Studia Mathematica

Similarity:

The inequality ʃ l o g | a n e 2 π i φ n | d φ 1 d φ n C l o g ( | a n | 2 ) 1 / 2 with an absolute constant C, and similar ones, are extended to the case of a n belonging to an arbitrary normed space X and an arbitrary compact group of unitary operators on X instead of the operators of multiplication by e 2 π i φ .

On the range of Carmichael's universal-exponent function

Florian Luca, Carl Pomerance (2014)

Acta Arithmetica

Similarity:

Let λ denote Carmichael’s function, so λ(n) is the universal exponent for the multiplicative group modulo n. It is closely related to Euler’s φ-function, but we show here that the image of λ is much denser than the image of φ. In particular the number of λ-values to x exceeds x / ( l o g x ) . 36 for all large x, while for φ it is equal to x / ( l o g x ) 1 + o ( 1 ) , an old result of Erdős. We also improve on an earlier result of the first author and Friedlander giving an upper bound for the distribution of λ-values.

On the divisor function over Piatetski-Shapiro sequences

Hui Wang, Yu Zhang (2023)

Czechoslovak Mathematical Journal

Similarity:

Let [ x ] be an integer part of x and d ( n ) be the number of positive divisor of n . Inspired by some results of M. Jutila (1987), we prove that for 1 < c < 6 5 , n x d ( [ n c ] ) = c x log x + ( 2 γ - c ) x + O x log x , where γ is the Euler constant and [ n c ] is the Piatetski-Shapiro sequence. This gives an improvement upon the classical result of this problem.

Equilibrium states for interval maps: the potential - t log | D f |

Henk Bruin, Mike Todd (2009)

Annales scientifiques de l'École Normale Supérieure

Similarity:

Let f : I I be a C 2 multimodal interval map satisfying polynomial growth of the derivatives along critical orbits. We prove the existence and uniqueness of equilibrium states for the potential φ t : x - t log | D f ( x ) | for t close to 1 , and also that the pressure function t P ( φ t ) is analytic on an appropriate interval near t = 1 .

Dimension of weakly expanding points for quadratic maps

Samuel Senti (2003)

Bulletin de la Société Mathématique de France

Similarity:

For the real quadratic map P a ( x ) = x 2 + a and a given ϵ &gt; 0 a point x has good expansion properties if any interval containing x also contains a neighborhood  J of x with P a n | J univalent, with bounded distortion and B ( 0 , ϵ ) P a n ( J ) for some n . The ϵ -weakly expanding set is the set of points which do not have good expansion properties. Let α denote the negative fixed point and M the first return time of the critical orbit to [ α , - α ] . We show there is a set of parameters with positive Lebesgue measure for which the Hausdorff...

On finitely generated closed ideals in H ( D )

Jean Bourgain (1985)

Annales de l'institut Fourier

Similarity:

Assume f 1 , ... , f N a finite set of functions in H ( D ) , the space of bounded analytic functions on the open unit disc. We give a sufficient condition on a function f in H ( D ) to belong to the norm-closure of the ideal I ( f 1 , ... , f N ) generated by f 1 , ... , f N , namely the property | f ( z ) | α ( | f 1 ( z ) | + ... + | f N ( z ) | ) for z D for some function α : R + R + satisfying lim t 0 α ( t ) / t = 0 . The main feature in the proof is an improvement in the contour-construction appearing in L. Carleson’s solution of the corona-problem. It is also shown that the property | f ( z ) | C max 1 j N | f j ( z ) | for z D ...