Comparison theorem between Fourier transform and Fourier transform with compact support

Christine Huyghe[1]

  • [1] IRMA, UFR de mathématiques Université de Strasbourg 7, rue René Descartes 67084 Strasbourg cedex France

Journal de Théorie des Nombres de Bordeaux (2013)

  • Volume: 25, Issue: 1, page 79-97
  • ISSN: 1246-7405

Abstract

top
We prove a comparison theorem between Fourier transform without support and and Fourier transform with compact support in the context of arithmetic 𝒟 -modules.

How to cite

top

Huyghe, Christine. "Comparison theorem between Fourier transform and Fourier transform with compact support." Journal de Théorie des Nombres de Bordeaux 25.1 (2013): 79-97. <http://eudml.org/doc/275793>.

@article{Huyghe2013,
abstract = {We prove a comparison theorem between Fourier transform without support and and Fourier transform with compact support in the context of arithmetic $\{\mathcal\{D\}\}$-modules.},
affiliation = {IRMA, UFR de mathématiques Université de Strasbourg 7, rue René Descartes 67084 Strasbourg cedex France},
author = {Huyghe, Christine},
journal = {Journal de Théorie des Nombres de Bordeaux},
keywords = {arithmetic -modules; Fourier Transform},
language = {eng},
month = {4},
number = {1},
pages = {79-97},
publisher = {Société Arithmétique de Bordeaux},
title = {Comparison theorem between Fourier transform and Fourier transform with compact support},
url = {http://eudml.org/doc/275793},
volume = {25},
year = {2013},
}

TY - JOUR
AU - Huyghe, Christine
TI - Comparison theorem between Fourier transform and Fourier transform with compact support
JO - Journal de Théorie des Nombres de Bordeaux
DA - 2013/4//
PB - Société Arithmétique de Bordeaux
VL - 25
IS - 1
SP - 79
EP - 97
AB - We prove a comparison theorem between Fourier transform without support and and Fourier transform with compact support in the context of arithmetic ${\mathcal{D}}$-modules.
LA - eng
KW - arithmetic -modules; Fourier Transform
UR - http://eudml.org/doc/275793
ER -

References

top
  1. T. Abe and A. Marmora, Product formula for p -adic epsilon factors. Arxiv, pages 1–77, 2011. 
  2. P. Berthelot, 𝒟 -modules arithmétiques I. Opérateurs différentiels de niveau fini. Ann. scient. Éc. Norm. Sup., 4 e série, 29 (1996), 185–272. Zbl0886.14004MR1373933
  3. P. Berthelot, D-modules arithmétiques II descente par Frobenius. Bull. Soc. Math. France, Mémoire 81 (2000), 1–135. Zbl0948.14017
  4. C. Huyghe, Construction et étude de la Transformation de Fourier pour les D-modules arithmétiques. Thèse de Doctorat, Université de Rennes I, 1995. 
  5. C. Huyghe, Interprétation géométrique sur l’espace projectif des A N ( K ) -modules cohérents. C. R. Acad. Sci. Paris, t. 321 (1995), Série I, 587–590. Zbl0872.14010MR1356558
  6. C. Huyghe, D -affinité des schémas projectifs. Ann. Inst. Fourier, t. 48 (1998), fascicule 4, 913–956. Zbl0910.14005MR1656002
  7. C. Huyghe, Un théorème de comparaison entre les faisceaux d’opérateurs différentiels de Berthelot et de Mebkhout-Narvaez-Macarro. Journal of Algebraic Geometry 12 (2003), No. 1, 147–199. Zbl1053.14015MR1948688
  8. N. Katz and G. Laumon, Transformation de Fourier et majoration de sommes exponentielles. Publ. Math. I.H.E.S. 62 (1985), 361–418. Zbl0603.14015MR823177
  9. C. Noot-Huyghe, Transformation de Fourier des 𝒟 -modules arithmétiques. I. In Geometric aspects of Dwork theory. Vol. I, II, pages 857–907. Walter de Gruyter GmbH & Co. KG, Berlin, 2004. Zbl1126.14016MR2099091
  10. C. Noot-Huyghe, Finitude de la dimension homologique d’algèbres d’opérateurs différentiels faiblement complètes et à coefficients surconvergents. J. Algebra 307(2) (2007), 499–540. Zbl1111.14006MR2275360
  11. A. VirrionDualité locale et holonomie pour les 𝒟 -modules arithmétiques. Bull. Soc. Math. France, t. 321 (2000), 101–168. Zbl0955.14015MR1765829
  12. A. Virrion, Trace et dualité relative pour les 𝒟 -modules arithmétiques. In Geometric aspects of Dwork theory. Vol. I, II, pages 1039–1112. Walter de Gruyter GmbH & Co. KG, Berlin, 2004. Zbl1083.14017MR2099095

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.