Comparison theorem between Fourier transform and Fourier transform with compact support
- [1] IRMA, UFR de mathématiques Université de Strasbourg 7, rue René Descartes 67084 Strasbourg cedex France
Journal de Théorie des Nombres de Bordeaux (2013)
- Volume: 25, Issue: 1, page 79-97
- ISSN: 1246-7405
Access Full Article
topAbstract
topHow to cite
topHuyghe, Christine. "Comparison theorem between Fourier transform and Fourier transform with compact support." Journal de Théorie des Nombres de Bordeaux 25.1 (2013): 79-97. <http://eudml.org/doc/275793>.
@article{Huyghe2013,
abstract = {We prove a comparison theorem between Fourier transform without support and and Fourier transform with compact support in the context of arithmetic $\{\mathcal\{D\}\}$-modules.},
affiliation = {IRMA, UFR de mathématiques Université de Strasbourg 7, rue René Descartes 67084 Strasbourg cedex France},
author = {Huyghe, Christine},
journal = {Journal de Théorie des Nombres de Bordeaux},
keywords = {arithmetic -modules; Fourier Transform},
language = {eng},
month = {4},
number = {1},
pages = {79-97},
publisher = {Société Arithmétique de Bordeaux},
title = {Comparison theorem between Fourier transform and Fourier transform with compact support},
url = {http://eudml.org/doc/275793},
volume = {25},
year = {2013},
}
TY - JOUR
AU - Huyghe, Christine
TI - Comparison theorem between Fourier transform and Fourier transform with compact support
JO - Journal de Théorie des Nombres de Bordeaux
DA - 2013/4//
PB - Société Arithmétique de Bordeaux
VL - 25
IS - 1
SP - 79
EP - 97
AB - We prove a comparison theorem between Fourier transform without support and and Fourier transform with compact support in the context of arithmetic ${\mathcal{D}}$-modules.
LA - eng
KW - arithmetic -modules; Fourier Transform
UR - http://eudml.org/doc/275793
ER -
References
top- T. Abe and A. Marmora, Product formula for -adic epsilon factors. Arxiv, pages 1–77, 2011.
- P. Berthelot, -modules arithmétiques I. Opérateurs différentiels de niveau fini. Ann. scient. Éc. Norm. Sup., série, 29 (1996), 185–272. Zbl0886.14004MR1373933
- P. Berthelot, D-modules arithmétiques II descente par Frobenius. Bull. Soc. Math. France, Mémoire 81 (2000), 1–135. Zbl0948.14017
- C. Huyghe, Construction et étude de la Transformation de Fourier pour les D-modules arithmétiques. Thèse de Doctorat, Université de Rennes I, 1995.
- C. Huyghe, Interprétation géométrique sur l’espace projectif des -modules cohérents. C. R. Acad. Sci. Paris, t. 321 (1995), Série I, 587–590. Zbl0872.14010MR1356558
- C. Huyghe, -affinité des schémas projectifs. Ann. Inst. Fourier, t. 48 (1998), fascicule 4, 913–956. Zbl0910.14005MR1656002
- C. Huyghe, Un théorème de comparaison entre les faisceaux d’opérateurs différentiels de Berthelot et de Mebkhout-Narvaez-Macarro. Journal of Algebraic Geometry 12 (2003), No. 1, 147–199. Zbl1053.14015MR1948688
- N. Katz and G. Laumon, Transformation de Fourier et majoration de sommes exponentielles. Publ. Math. I.H.E.S. 62 (1985), 361–418. Zbl0603.14015MR823177
- C. Noot-Huyghe, Transformation de Fourier des -modules arithmétiques. I. In Geometric aspects of Dwork theory. Vol. I, II, pages 857–907. Walter de Gruyter GmbH & Co. KG, Berlin, 2004. Zbl1126.14016MR2099091
- C. Noot-Huyghe, Finitude de la dimension homologique d’algèbres d’opérateurs différentiels faiblement complètes et à coefficients surconvergents. J. Algebra 307(2) (2007), 499–540. Zbl1111.14006MR2275360
- A. VirrionDualité locale et holonomie pour les -modules arithmétiques. Bull. Soc. Math. France, t. 321 (2000), 101–168. Zbl0955.14015MR1765829
- A. Virrion, Trace et dualité relative pour les -modules arithmétiques. In Geometric aspects of Dwork theory. Vol. I, II, pages 1039–1112. Walter de Gruyter GmbH & Co. KG, Berlin, 2004. Zbl1083.14017MR2099095
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.