Numerical aspects of the nonlinear Schrödinger equation in the semiclassical limit in a supercritical regime

Rémi Carles; Bijan Mohammadi

ESAIM: Mathematical Modelling and Numerical Analysis (2011)

  • Volume: 45, Issue: 5, page 981-1008
  • ISSN: 0764-583X

Abstract

top
We study numerically the semiclassical limit for the nonlinear Schrödinger equation thanks to a modification of the Madelung transform due to Grenier. This approach allows for the presence of vacuum. Even if the mesh size and the time step do not depend on the Planck constant, we recover the position and current densities in the semiclassical limit, with a numerical rate of convergence in accordance with the theoretical results, before shocks appear in the limiting Euler equation. By using simple projections, the mass and the momentum of the solution are well preserved by the numerical scheme, while the variation of the energy is not negligible numerically. Experiments suggest that beyond the critical time for the Euler equation, Grenier's approach yields smooth but highly oscillatory terms.

How to cite

top

Carles, Rémi, and Mohammadi, Bijan. "Numerical aspects of the nonlinear Schrödinger equation in the semiclassical limit in a supercritical regime." ESAIM: Mathematical Modelling and Numerical Analysis 45.5 (2011): 981-1008. <http://eudml.org/doc/276351>.

@article{Carles2011,
abstract = { We study numerically the semiclassical limit for the nonlinear Schrödinger equation thanks to a modification of the Madelung transform due to Grenier. This approach allows for the presence of vacuum. Even if the mesh size and the time step do not depend on the Planck constant, we recover the position and current densities in the semiclassical limit, with a numerical rate of convergence in accordance with the theoretical results, before shocks appear in the limiting Euler equation. By using simple projections, the mass and the momentum of the solution are well preserved by the numerical scheme, while the variation of the energy is not negligible numerically. Experiments suggest that beyond the critical time for the Euler equation, Grenier's approach yields smooth but highly oscillatory terms. },
author = {Carles, Rémi, Mohammadi, Bijan},
journal = {ESAIM: Mathematical Modelling and Numerical Analysis},
keywords = {Nonlinear Schrödinger equation; semiclassical limit; compressible Euler equation; numerical simulation; nonlinear Schrödinger equation; compressible Euler equation; numerical examples; spectral method; Madelung transform; convergence; shocks},
language = {eng},
month = {6},
number = {5},
pages = {981-1008},
publisher = {EDP Sciences},
title = {Numerical aspects of the nonlinear Schrödinger equation in the semiclassical limit in a supercritical regime},
url = {http://eudml.org/doc/276351},
volume = {45},
year = {2011},
}

TY - JOUR
AU - Carles, Rémi
AU - Mohammadi, Bijan
TI - Numerical aspects of the nonlinear Schrödinger equation in the semiclassical limit in a supercritical regime
JO - ESAIM: Mathematical Modelling and Numerical Analysis
DA - 2011/6//
PB - EDP Sciences
VL - 45
IS - 5
SP - 981
EP - 1008
AB - We study numerically the semiclassical limit for the nonlinear Schrödinger equation thanks to a modification of the Madelung transform due to Grenier. This approach allows for the presence of vacuum. Even if the mesh size and the time step do not depend on the Planck constant, we recover the position and current densities in the semiclassical limit, with a numerical rate of convergence in accordance with the theoretical results, before shocks appear in the limiting Euler equation. By using simple projections, the mass and the momentum of the solution are well preserved by the numerical scheme, while the variation of the energy is not negligible numerically. Experiments suggest that beyond the critical time for the Euler equation, Grenier's approach yields smooth but highly oscillatory terms.
LA - eng
KW - Nonlinear Schrödinger equation; semiclassical limit; compressible Euler equation; numerical simulation; nonlinear Schrödinger equation; compressible Euler equation; numerical examples; spectral method; Madelung transform; convergence; shocks
UR - http://eudml.org/doc/276351
ER -

References

top
  1. F.Kh. Abdullaev, A. Gammal, L. Tomio and T. Frederico, Stability of trapped Bose-Einstein condensates. Phys. Rev. A63 (2001) 043604.  
  2. T. Alazard and R. Carles, Semi-classical limit of Schrödinger-Poisson equations in space dimension n 3 . J. Diff. Eq.233 (2007) 241–275.  
  3. T. Alazard and R. Carles, Supercritical geometric optics for nonlinear Schrödinger equations. Arch. Rational Mech. Anal.194 (2009) 315–347.  
  4. T. Alazard and R. Carles, WKB analysis for the Gross-Pitaevskii equation with non-trivial boundary conditions at infinity. Ann. Inst. Henri Poincaré, Anal. Non Linéaire26 (2009) 959–977.  
  5. W. Bao, S. Jin and P.A. Markowich, On time-splitting spectral approximations for the Schrödinger equation in the semiclassical regime. J. Comput. Phys.175 (2002) 487–524.  
  6. W. Bao, S. Jin and P.A. Markowich, Numerical study of time-splitting spectral discretizations of nonlinear Schrödinger equations in the semiclassical regimes. SIAM J. Sci. Comput.25 (2003) 27–64.  
  7. C. Besse, A relaxation scheme for the nonlinear Schrödinger equation. SIAM J. Numer. Anal.42 (2004) 934–952.  
  8. C. Besse, B. Bidégaray and S. Descombes, Order estimates in time of splitting methods for the nonlinear Schrödinger equation. SIAM J. Numer. Anal.40 (2002) 26–40.  
  9. Y. Brenier and L. Corrias, A kinetic formulation for multi-branch entropy solutions of scalar conservation laws. Ann. Inst. Henri Poincaré, Anal. Non Linéaire15 (1998) 169–190.  
  10. R. Carles, Geometric optics and instability for semi-classical Schrödinger equations. Arch. Rational Mech. Anal.183 (2007) 525–553.  
  11. R. Carles, Semi-classical analysis for nonlinear Schrödinger equations. World Scientific Publishing Co. Pte. Ltd., Hackensack, NJ (2008).  
  12. R. Carles and L. Gosse, Numerical aspects of nonlinear Schrödinger equations in the presence of caustics. Math. Models Methods Appl. Sci.17 (2007) 1531–1553.  
  13. T. Cazenave, Semilinear Schrödinger equations, Courant Lecture Notes in Mathematics10. New York University Courant Institute of Mathematical Sciences, New York (2003).  
  14. J.-Y. Chemin, Dynamique des gaz à masse totale finie. Asymptotic Anal.3 (1990) 215–220.  
  15. D. Chiron and F. Rousset, Geometric optics and boundary layers for nonlinear Schrödinger equations. Comm. Math. Phys.288 (2009) 503–546.  
  16. F. Dalfovo, S. Giorgini, L.P. Pitaevskii and S. Stringari, Theory of Bose-Einstein condensation in trapped gases. Rev. Mod. Phys.71 (1999) 463–512.  
  17. P. Degond, S. Gallego and F. Méhats, An asymptotic preserving scheme for the Schrödinger equation in the semiclassical limit. C.R. Math. Acad. Sci. Paris345 (2007) 531–536.  
  18. P. Degond, S. Jin and M. Tang, On the time splitting spectral method for the complex Ginzburg-Landau equation in the large time and space scale limit. SIAM J. Sci. Comput.30 (2008) 2466–2487.  
  19. J.J. Duistermaat, Oscillatory integrals, Lagrange immersions and unfolding of singularities. Comm. Pure Appl. Math.27 (1974) 207–281.  
  20. A. Gammal, T. Frederico, L. Tomio and Ph. Chomaz, Atomic Bose-Einstein condensation with three-body intercations and collective excitations. J. Phys. B33 (2000) 4053–4067.  
  21. C.L. Gardner, The quantum hydrodynamic model for semiconductor devices. SIAM J. Appl. Math.54 (1994) 409–427.  
  22. P. Gérard, Remarques sur l'analyse semi-classique de l'équation de Schrödinger non linéaire, Séminaire sur les Équations aux Dérivées Partielles, 1992–1993. École Polytech., Palaiseau (1993), www.numdam.org, pp. Exp. No. XIII, 13.  URIhttp://www.numdam.org/numdam-bin/fitem?id=SEDP_1992-1993____A13_0
  23. P. Gérard, P.A. Markowich, N.J. Mauser and F. Poupaud, Homogenization limits and Wigner transforms. Comm. Pure Appl. Math.50 (1997) 323–379.  
  24. J. Ginibre and G. Velo, On a class of nonlinear Schrödinger equations. I The Cauchy problem, general case. J. Funct. Anal.32 (1979) 1–32.  
  25. L. Gosse, Using K -branch entropy solutions for multivalued geometric optics computations. J. Comput. Phys.180 (2002) 155–182.  
  26. L. Gosse, A case study on the reliability of multiphase WKB approximation for the one-dimensional Schrödinger equation, Numerical methods for hyperbolic and kinetic problems, IRMA Lect. Math. Theor. Phys.7. Eur. Math. Soc., Zürich (2005) 131–141.  
  27. E. Grenier, Semiclassical limit of the nonlinear Schrödinger equation in small time. Proc. Amer. Math. Soc.126 (1998) 523–530.  
  28. S. Jin, Efficient asymptotic-preserving (AP) schemes for some multiscale kinetic equations. SIAM J. Sci. Comput.21 (1999) 441–454.  
  29. C. Josserand and Y. Pomeau, Nonlinear aspects of the theory of Bose-Einstein condensates. Nonlinearity14 (2001) R25–R62.  
  30. H. Li and C.-K. Lin, Semiclassical limit and well-posedness of nonlinear Schrödinger-Poisson systems. Electron. J. Diff. Eq. (2003) 17 (electronic).  
  31. H. Liu and E. Tadmor, Semiclassical limit of the nonlinear Schrödinger-Poisson equation with subcritical initial data. Methods Appl. Anal.9 (2002) 517–531.  
  32. E. Madelung, Quanten theorie in Hydrodynamischer Form. Zeit. Physik40 (1927) 322.  
  33. T. Makino, S. Ukai and S. Kawashima, Sur la solution à support compact de l'équation d'Euler compressible. Japan J. Appl. Math.3 (1986) 249–257.  
  34. P.A. Markowich, P. Pietra and C. Pohl, Numerical approximation of quadratic observables of Schrödinger-type equations in the semi-classical limit. Numer. Math.81 (1999) 595–630.  
  35. S. Masaki, Local existence and WKB approximation of solutions to Schrödinger-Poisson system in the two-dimensional whole space. Comm. Partial Differential Equations35 (2010) 2253–2278.  
  36. V.P. Maslov and M.V. Fedoriuk, Semiclassical approximation in quantum mechanics, Mathematical Physics and Applied Mathematics7. Translated from the Russian by J. Niederle and J. Tolar, Contemporary Mathematics5. D. Reidel Publishing Co., Dordrecht (1981).  
  37. G. Métivier, Remarks on the well-posedness of the nonlinear Cauchy problem, Geometric analysis of PDE and several complex variables, Contemp. Math.368. Amer. Math. Soc., Providence, RI (2005) 337–356.  
  38. H. Michinel, J. Campo-Táboas, R. García-Fernández, J.R. Salgueiro and M.L. Quiroga-Teixeiro, Liquid light condensates. Phys. Rev. E65 (2002) 066604.  
  39. B. Mohammadi and J.H. Saiac, Pratique de la simulation numérique. Dunod, Paris (2003).  
  40. J. Nocedal and S.J. Wright, Numerical optimization. 2d edition, Springer Series in Operations Research and Financial Engineering, Springer, New York (2006).  
  41. L. Pitaevskii and S. Stringari, Bose-Einstein condensation, International Series of Monographs on Physics116. The Clarendon Press Oxford University Press, Oxford (2003).  
  42. E. Ryckman and M. Visan, Global well-posedness and scattering for the defocusing energy–critical nonlinear Schrödinger equation in 1 + 4 . Amer. J. Math.129 (2007) 1–60.  
  43. G. Strang, Introduction to applied mathematics. Applied Mathematical Sciences, Wellesley-Cambridge Press, New York (1986).  
  44. C. Sulem and P.-L. Sulem, The nonlinear Schrödinger equation, self-focusing and wave collapse. Springer-Verlag, New York (1999).  
  45. M. Taylor, Partial differential equations. III, Applied Mathematical Sciences117. Nonlinear equations. Springer-Verlag, New York (1997).  
  46. L. Thomann, Instabilities for supercritical Schrödinger equations in analytic manifolds. J. Diff. Eq.245 (2008) 249–280.  
  47. Z. Xin, Blowup of smooth solutions of the compressible Navier-Stokes equation with compact density. Comm. Pure Appl. Math.51 (1998) 229–240.  
  48. V.E. Zakharov and S.V. Manakov, On the complete integrability of a nonlinear Schrödinger equation. Theor. Math. Phys.19 (1974) 551–559.  
  49. V.E. Zakharov and A.B. Shabat, Interaction between solitons in a stable medium. Sov. Phys. JETP37 (1973) 823–828.  

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.