On the potential theory of some systems of coupled PDEs
Abderrahim Aslimani; Imad El Ghazi; Mohamed El Kadiri; Sabah Haddad
Commentationes Mathematicae Universitatis Carolinae (2016)
- Volume: 57, Issue: 2, page 135-154
- ISSN: 0010-2628
Access Full Article
topAbstract
topHow to cite
topAslimani, Abderrahim, et al. "On the potential theory of some systems of coupled PDEs." Commentationes Mathematicae Universitatis Carolinae 57.2 (2016): 135-154. <http://eudml.org/doc/280141>.
@article{Aslimani2016,
abstract = {In this paper we study some potential theoretical properties of solutions and super-solutions of some PDE systems (S) of type $L_1u =-\mu _1v$, $L_2v =-\mu _2u$, on a domain $D$ of $\mathbb \{R\}^d$, where $\mu _1$ and $\mu _2$ are suitable measures on $D$, and $L_1$, $L_2$ are two second order linear differential elliptic operators on $D$ with coefficients of class $\mathcal \{C\}^\infty $. We also obtain the integral representation of the nonnegative solutions and supersolutions of the system (S) by means of the Green kernels and Martin boundaries associated with $L_1$ and $L_2$, and a convergence property for increasing sequences of solutions of (S).},
author = {Aslimani, Abderrahim, El Ghazi, Imad, El Kadiri, Mohamed, Haddad, Sabah},
journal = {Commentationes Mathematicae Universitatis Carolinae},
keywords = {harmonic function; superharmonic function; potential; elliptic linear differential operator; kernel; coupled PDEs system; Kato measure},
language = {eng},
number = {2},
pages = {135-154},
publisher = {Charles University in Prague, Faculty of Mathematics and Physics},
title = {On the potential theory of some systems of coupled PDEs},
url = {http://eudml.org/doc/280141},
volume = {57},
year = {2016},
}
TY - JOUR
AU - Aslimani, Abderrahim
AU - El Ghazi, Imad
AU - El Kadiri, Mohamed
AU - Haddad, Sabah
TI - On the potential theory of some systems of coupled PDEs
JO - Commentationes Mathematicae Universitatis Carolinae
PY - 2016
PB - Charles University in Prague, Faculty of Mathematics and Physics
VL - 57
IS - 2
SP - 135
EP - 154
AB - In this paper we study some potential theoretical properties of solutions and super-solutions of some PDE systems (S) of type $L_1u =-\mu _1v$, $L_2v =-\mu _2u$, on a domain $D$ of $\mathbb {R}^d$, where $\mu _1$ and $\mu _2$ are suitable measures on $D$, and $L_1$, $L_2$ are two second order linear differential elliptic operators on $D$ with coefficients of class $\mathcal {C}^\infty $. We also obtain the integral representation of the nonnegative solutions and supersolutions of the system (S) by means of the Green kernels and Martin boundaries associated with $L_1$ and $L_2$, and a convergence property for increasing sequences of solutions of (S).
LA - eng
KW - harmonic function; superharmonic function; potential; elliptic linear differential operator; kernel; coupled PDEs system; Kato measure
UR - http://eudml.org/doc/280141
ER -
References
top- Armitage D.H., Gardiner S.J., Classical Potential Theory, Springer, London, 2001. Zbl0972.31001MR1801253
- Bliedtner J., Hansen W., Potential theory. An analytic and probabilistic approach to balayage, Universitext, Springer, Berlin, 1986. Zbl0706.31001MR0850715
- Boboc N., Bucur Gh., Perturbations in excessive structures, Complex analysis–fifth Romanian-Finnish seminar, Part 2 (Bucharest, 1981), Lecture Notes in Math., 1014, Springer, Berlin, 1983, pp. 155–187. Zbl0534.47008MR0738120
- Bouleau N., Semi-groupe triangulaire associé à un espace biharmonique, C.R. Acad. Sci. Paris Sér. A-B 288 (1979), no. 7, A415–A417. Zbl0405.31009MR0552066
- Bouleau N., Couplage de deux semi-groupes droites, C.R. Acad. Sci. Paris Sér. A-B 288 (1979), no. 8, A465–A467. MR0527698
- Bouleau N., Espaces biharmoniques et couplage de processus de Markov, J. Math. Pures Appl. (9) 59 (1980), no. 2, 187–240. Zbl0403.60068MR0581988
- Bouleau N., 10.1007/BF01450707, Math. Ann. 255 (1981), no. 3, 335–350. Zbl0441.31006MR0615854DOI10.1007/BF01450707
- Brelot M., Axiomatique des fonctions harmoniques, Université de Montréal, 1966. Zbl0148.10401MR0247124
- Chen Z.Q., Zhao Z., 10.1214/aop/1042644718, Ann. Probab. 24 (1996), no. 1, 293–319. Zbl0854.60062MR1387637DOI10.1214/aop/1042644718
- Constantinescu C.A., Cornea A., Potential Theory on Harmonic Spaces, Springer, New York-Heidelberg, 1972. Zbl0248.31011MR0419799
- Doob J.L, Classical Potential Theory and its Probabilistic Counterpart, Springer, New York, 1984. Zbl0990.31001MR0731258
- El Kadiri M., Sur la représentation intégrale en théorie axiomatique des fonctions biharmoniques, Rev. Roumaine Math. Pures Appl. 42 (1997), no. 7–8, 579–589. Zbl1089.31501MR1650389
- El Kadiri M., 10.1023/A:1015283920365, Positivity 6 (2002), 129–145. Zbl0998.31004MR1905385DOI10.1023/A:1015283920365
- El Kadiri M., Haddad S., Comportement des fonctions bisurharmoniques et problème de Riquier fin à la frontière de Martin biharmonique, Algebras Groups Geom. 24 (2007), 155–186. Zbl1148.31007MR2345849
- Gazzola F., Sweers G., 10.1007/s00205-007-0090-4, Arch. Ration. Mech. Anal. 188 (2008), no. 3, 399–427. Zbl1155.35019MR2393435DOI10.1007/s00205-007-0090-4
- Gazzola F., Grunau H.-C., Sweers G., Polyharmonic boundary value problems. Positivity preserving and nonlinear higher order elliptic equations in bounded domains, Lecture Notes in Mathematics, 1991, Springer, Berlin, 2010. Zbl1239.35002MR2667016
- Grunau H.-C., Sweers G., Positivity properties of elliptic boundary value problems of higher order, Proceedings of the Second World Congress of Nonlinear Analysts, Part 8 (Athens, 1996), Nonlinear Anal. 30 (1997), no. 8, 5251–5258. Zbl0894.35016MR1726027
- Grunau H-C., Sweers G., 10.1007/s002080050052, Math. Ann. 307 (1997), no. 4, 589–626. Zbl0892.35031MR1464133DOI10.1007/s002080050052
- Hansen W., Harnack inequalities for Schrödinger operators, Ann. Scuola Norm. Sup. Pisa Cl. Sci. (4) 28 (1999), no. 3, 413–470. Zbl0940.35063MR1736524
- Hansen W., 10.1017/S002776300000845X, Nagoya Math. J. 169 (2003), 77–118. Zbl1094.31005MR1962524DOI10.1017/S002776300000845X
- Helms L.L., Introduction to Potential Theory, Pure and Applied Mathematics, Vol. XXII, Wiley-Interscience A Division of John Wiley and Sons, New York-London-Sydney, 1969. Zbl0188.17203MR0261018
- Hervé R.-M., 10.5802/aif.125, Ann. Inst. Fourier (Grenoble) 12 (1962), 415–571. Zbl0101.08103MR0139756DOI10.5802/aif.125
- Janssen K., On the Martin boundary of weakly coupled balayage spaces, Rev. Roumaine Math. Pures Appl. 51 (2006), no. 5–6, 655–664. Zbl1120.31005MR2320915
- Mokobodzki G., 10.5802/aif.199, Ann. Inst. Fourier (Grenoble) 15 (1965), fasc. 1, 103–112. Zbl0134.09502MR0196110DOI10.5802/aif.199
- Smyrnélis E.P., 10.5802/aif.544, Ann. Inst. Fourier (Grenoble) 25 (1975), no. 1, 35–97. Zbl0295.31006MR0382691DOI10.5802/aif.544
- Smyrnélis E.P., 10.5802/aif.624, Ann. Inst. Fourier (Grenoble) 26 (1976), no. 3., 1–47. Zbl0325.31020MR0477101DOI10.5802/aif.624
- Sweers G., 10.1007/BF02921596, J. Geom. Anal. 4 (1994), no. 1, 121–142. Zbl0792.35048MR1274141DOI10.1007/BF02921596
- Sweers G., 10.1007/BF02570833, Math. Z. 209 (1992), no. 2, 251–271. MR1147817DOI10.1007/BF02570833
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.