On the potential theory of some systems of coupled PDEs

Abderrahim Aslimani; Imad El Ghazi; Mohamed El Kadiri; Sabah Haddad

Commentationes Mathematicae Universitatis Carolinae (2016)

  • Volume: 57, Issue: 2, page 135-154
  • ISSN: 0010-2628

Abstract

top
In this paper we study some potential theoretical properties of solutions and super-solutions of some PDE systems (S) of type L 1 u = - μ 1 v , L 2 v = - μ 2 u , on a domain D of d , where μ 1 and μ 2 are suitable measures on D , and L 1 , L 2 are two second order linear differential elliptic operators on D with coefficients of class 𝒞 . We also obtain the integral representation of the nonnegative solutions and supersolutions of the system (S) by means of the Green kernels and Martin boundaries associated with L 1 and L 2 , and a convergence property for increasing sequences of solutions of (S).

How to cite

top

Aslimani, Abderrahim, et al. "On the potential theory of some systems of coupled PDEs." Commentationes Mathematicae Universitatis Carolinae 57.2 (2016): 135-154. <http://eudml.org/doc/280141>.

@article{Aslimani2016,
abstract = {In this paper we study some potential theoretical properties of solutions and super-solutions of some PDE systems (S) of type $L_1u =-\mu _1v$, $L_2v =-\mu _2u$, on a domain $D$ of $\mathbb \{R\}^d$, where $\mu _1$ and $\mu _2$ are suitable measures on $D$, and $L_1$, $L_2$ are two second order linear differential elliptic operators on $D$ with coefficients of class $\mathcal \{C\}^\infty $. We also obtain the integral representation of the nonnegative solutions and supersolutions of the system (S) by means of the Green kernels and Martin boundaries associated with $L_1$ and $L_2$, and a convergence property for increasing sequences of solutions of (S).},
author = {Aslimani, Abderrahim, El Ghazi, Imad, El Kadiri, Mohamed, Haddad, Sabah},
journal = {Commentationes Mathematicae Universitatis Carolinae},
keywords = {harmonic function; superharmonic function; potential; elliptic linear differential operator; kernel; coupled PDEs system; Kato measure},
language = {eng},
number = {2},
pages = {135-154},
publisher = {Charles University in Prague, Faculty of Mathematics and Physics},
title = {On the potential theory of some systems of coupled PDEs},
url = {http://eudml.org/doc/280141},
volume = {57},
year = {2016},
}

TY - JOUR
AU - Aslimani, Abderrahim
AU - El Ghazi, Imad
AU - El Kadiri, Mohamed
AU - Haddad, Sabah
TI - On the potential theory of some systems of coupled PDEs
JO - Commentationes Mathematicae Universitatis Carolinae
PY - 2016
PB - Charles University in Prague, Faculty of Mathematics and Physics
VL - 57
IS - 2
SP - 135
EP - 154
AB - In this paper we study some potential theoretical properties of solutions and super-solutions of some PDE systems (S) of type $L_1u =-\mu _1v$, $L_2v =-\mu _2u$, on a domain $D$ of $\mathbb {R}^d$, where $\mu _1$ and $\mu _2$ are suitable measures on $D$, and $L_1$, $L_2$ are two second order linear differential elliptic operators on $D$ with coefficients of class $\mathcal {C}^\infty $. We also obtain the integral representation of the nonnegative solutions and supersolutions of the system (S) by means of the Green kernels and Martin boundaries associated with $L_1$ and $L_2$, and a convergence property for increasing sequences of solutions of (S).
LA - eng
KW - harmonic function; superharmonic function; potential; elliptic linear differential operator; kernel; coupled PDEs system; Kato measure
UR - http://eudml.org/doc/280141
ER -

References

top
  1. Armitage D.H., Gardiner S.J., Classical Potential Theory, Springer, London, 2001. Zbl0972.31001MR1801253
  2. Bliedtner J., Hansen W., Potential theory. An analytic and probabilistic approach to balayage, Universitext, Springer, Berlin, 1986. Zbl0706.31001MR0850715
  3. Boboc N., Bucur Gh., Perturbations in excessive structures, Complex analysis–fifth Romanian-Finnish seminar, Part 2 (Bucharest, 1981), Lecture Notes in Math., 1014, Springer, Berlin, 1983, pp. 155–187. Zbl0534.47008MR0738120
  4. Bouleau N., Semi-groupe triangulaire associé à un espace biharmonique, C.R. Acad. Sci. Paris Sér. A-B 288 (1979), no. 7, A415–A417. Zbl0405.31009MR0552066
  5. Bouleau N., Couplage de deux semi-groupes droites, C.R. Acad. Sci. Paris Sér. A-B 288 (1979), no. 8, A465–A467. MR0527698
  6. Bouleau N., Espaces biharmoniques et couplage de processus de Markov, J. Math. Pures Appl. (9) 59 (1980), no. 2, 187–240. Zbl0403.60068MR0581988
  7. Bouleau N., 10.1007/BF01450707, Math. Ann. 255 (1981), no. 3, 335–350. Zbl0441.31006MR0615854DOI10.1007/BF01450707
  8. Brelot M., Axiomatique des fonctions harmoniques, Université de Montréal, 1966. Zbl0148.10401MR0247124
  9. Chen Z.Q., Zhao Z., 10.1214/aop/1042644718, Ann. Probab. 24 (1996), no. 1, 293–319. Zbl0854.60062MR1387637DOI10.1214/aop/1042644718
  10. Constantinescu C.A., Cornea A., Potential Theory on Harmonic Spaces, Springer, New York-Heidelberg, 1972. Zbl0248.31011MR0419799
  11. Doob J.L, Classical Potential Theory and its Probabilistic Counterpart, Springer, New York, 1984. Zbl0990.31001MR0731258
  12. El Kadiri M., Sur la représentation intégrale en théorie axiomatique des fonctions biharmoniques, Rev. Roumaine Math. Pures Appl. 42 (1997), no. 7–8, 579–589. Zbl1089.31501MR1650389
  13. El Kadiri M., 10.1023/A:1015283920365, Positivity 6 (2002), 129–145. Zbl0998.31004MR1905385DOI10.1023/A:1015283920365
  14. El Kadiri M., Haddad S., Comportement des fonctions bisurharmoniques et problème de Riquier fin à la frontière de Martin biharmonique, Algebras Groups Geom. 24 (2007), 155–186. Zbl1148.31007MR2345849
  15. Gazzola F., Sweers G., 10.1007/s00205-007-0090-4, Arch. Ration. Mech. Anal. 188 (2008), no. 3, 399–427. Zbl1155.35019MR2393435DOI10.1007/s00205-007-0090-4
  16. Gazzola F., Grunau H.-C., Sweers G., Polyharmonic boundary value problems. Positivity preserving and nonlinear higher order elliptic equations in bounded domains, Lecture Notes in Mathematics, 1991, Springer, Berlin, 2010. Zbl1239.35002MR2667016
  17. Grunau H.-C., Sweers G., Positivity properties of elliptic boundary value problems of higher order, Proceedings of the Second World Congress of Nonlinear Analysts, Part 8 (Athens, 1996), Nonlinear Anal. 30 (1997), no. 8, 5251–5258. Zbl0894.35016MR1726027
  18. Grunau H-C., Sweers G., 10.1007/s002080050052, Math. Ann. 307 (1997), no. 4, 589–626. Zbl0892.35031MR1464133DOI10.1007/s002080050052
  19. Hansen W., Harnack inequalities for Schrödinger operators, Ann. Scuola Norm. Sup. Pisa Cl. Sci. (4) 28 (1999), no. 3, 413–470. Zbl0940.35063MR1736524
  20. Hansen W., 10.1017/S002776300000845X, Nagoya Math. J. 169 (2003), 77–118. Zbl1094.31005MR1962524DOI10.1017/S002776300000845X
  21. Helms L.L., Introduction to Potential Theory, Pure and Applied Mathematics, Vol. XXII, Wiley-Interscience A Division of John Wiley and Sons, New York-London-Sydney, 1969. Zbl0188.17203MR0261018
  22. Hervé R.-M., 10.5802/aif.125, Ann. Inst. Fourier (Grenoble) 12 (1962), 415–571. Zbl0101.08103MR0139756DOI10.5802/aif.125
  23. Janssen K., On the Martin boundary of weakly coupled balayage spaces, Rev. Roumaine Math. Pures Appl. 51 (2006), no. 5–6, 655–664. Zbl1120.31005MR2320915
  24. Mokobodzki G., 10.5802/aif.199, Ann. Inst. Fourier (Grenoble) 15 (1965), fasc. 1, 103–112. Zbl0134.09502MR0196110DOI10.5802/aif.199
  25. Smyrnélis E.P., 10.5802/aif.544, Ann. Inst. Fourier (Grenoble) 25 (1975), no. 1, 35–97. Zbl0295.31006MR0382691DOI10.5802/aif.544
  26. Smyrnélis E.P., 10.5802/aif.624, Ann. Inst. Fourier (Grenoble) 26 (1976), no. 3., 1–47. Zbl0325.31020MR0477101DOI10.5802/aif.624
  27. Sweers G., 10.1007/BF02921596, J. Geom. Anal. 4 (1994), no. 1, 121–142. Zbl0792.35048MR1274141DOI10.1007/BF02921596
  28. Sweers G., 10.1007/BF02570833, Math. Z. 209 (1992), no. 2, 251–271. MR1147817DOI10.1007/BF02570833

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.