Stratonovich-Weyl correspondence for the Jacobi group

Benjamin Cahen

Communications in Mathematics (2014)

  • Volume: 22, Issue: 1, page 31-48
  • ISSN: 1804-1388

Abstract

top
We construct and study a Stratonovich-Weyl correspondence for the holomorphic representations of the Jacobi group.

How to cite

top

Cahen, Benjamin. "Stratonovich-Weyl correspondence for the Jacobi group." Communications in Mathematics 22.1 (2014): 31-48. <http://eudml.org/doc/261952>.

@article{Cahen2014,
abstract = {We construct and study a Stratonovich-Weyl correspondence for the holomorphic representations of the Jacobi group.},
author = {Cahen, Benjamin},
journal = {Communications in Mathematics},
keywords = {Berezin quantization; Berezin transform; quasi-Hermitian Lie group; unitary representation; holomorphic representation; reproducing kernel Hilbert space; Jacobi group; Stratonovich-Weyl correspondence; coadjoint orbit; Berezin quantization; Berezin transform; Stratonovich-Weyl correspondence; unitary holomorphic representation; coadjoint orbit; Jacobi group},
language = {eng},
number = {1},
pages = {31-48},
publisher = {University of Ostrava},
title = {Stratonovich-Weyl correspondence for the Jacobi group},
url = {http://eudml.org/doc/261952},
volume = {22},
year = {2014},
}

TY - JOUR
AU - Cahen, Benjamin
TI - Stratonovich-Weyl correspondence for the Jacobi group
JO - Communications in Mathematics
PY - 2014
PB - University of Ostrava
VL - 22
IS - 1
SP - 31
EP - 48
AB - We construct and study a Stratonovich-Weyl correspondence for the holomorphic representations of the Jacobi group.
LA - eng
KW - Berezin quantization; Berezin transform; quasi-Hermitian Lie group; unitary representation; holomorphic representation; reproducing kernel Hilbert space; Jacobi group; Stratonovich-Weyl correspondence; coadjoint orbit; Berezin quantization; Berezin transform; Stratonovich-Weyl correspondence; unitary holomorphic representation; coadjoint orbit; Jacobi group
UR - http://eudml.org/doc/261952
ER -

References

top
  1. Ali, S.T., Englis, M., 10.1142/S0129055X05002376, Rev. Math. Phys., 17, 4, 2005, 391-490, (2005) Zbl1075.81038MR2151954DOI10.1142/S0129055X05002376
  2. Arazy, J., Upmeier, H., Invariant symbolic calculi and eigenvalues of invariant operators on symmetric domains. Function spaces, interpolation theory and related topics (Lund, 2000) 151--211, 2002, De Gruyter, Berlin, (2002) MR1943284
  3. Arazy, J., Upmeier, H., Weyl Calculus for Complex and Real Symmetric Domains, Harmonic analysis on complex homogeneous domains and Lie groups (Rome, 2001), Atti Accad. Naz. Lincei Cl. Sci. Fis. Mat. Natur. Rend. Lincei (9) Mat. Appl., 13, 3--4, 2002, 165-181, (2002) MR1984098
  4. Berceanu, S., 10.1142/S0129055X06002619, Rev. Math. Phys., 18, 2006, 163-199, (2006) Zbl1099.81036MR2228923DOI10.1142/S0129055X06002619
  5. Berceanu, S., Gheorghe, A., On the geometry of Siegel-Jacobi domains, Int. J. Geom. Methods Mod. Phys., 8, 2011, 1783-1798, (2011) Zbl1250.22010MR2876095
  6. Berezin, F.A., Quantization, Math. USSR Izv., 8, 5, 1974, 1109-1165, (1974) Zbl0312.53049
  7. Berezin, F.A., 10.1070/IM1975v009n02ABEH001480, Math. USSR Izv., 9, 2, 1975, 341-379, (1975) DOI10.1070/IM1975v009n02ABEH001480
  8. Berndt, R., Böcherer, S., 10.1007/BF02570858, Math. Z., 204, 1990, 13-44, (1990) Zbl0695.10024MR1048065DOI10.1007/BF02570858
  9. Berndt, R., Schmidt, R., Elements of the representation theory of the Jacobi group, Progress in Mathematics 163, 1998, Birkhäuser Verlag, Basel, (1998) MR1634977
  10. Cahen, B., Berezin quantization for discrete series, Beiträge Algebra Geom., 51, 2010, 301-311, (2010) MR2682458
  11. Cahen, B., 10.1007/s12215-010-0026-y, Rend. Circ. Mat. Palermo, 59, 2010, 331-354, (2010) Zbl1218.22008MR2745515DOI10.1007/s12215-010-0026-y
  12. Cahen, B., Stratonovich-Weyl correspondence for discrete series representations, Arch. Math. (Brno), 47, 2011, 41-58, (2011) Zbl1240.22011MR2813546
  13. Cahen, B., 10.4171/RSMUP/129-16, Rend. Sem. Mat. Univ. Padova, 129, 2013, 277-297, (2013) Zbl1272.22007MR3090642DOI10.4171/RSMUP/129-16
  14. Cahen, B., Global Parametrization of Scalar Holomorphic Coadjoint Orbits of a Quasi-Hermitian Lie Group, Acta Univ. Palacki. Olomuc., Fac. rer. nat., Mathematica, 52, 2013, 35-48, (2013) Zbl1296.22007MR3202747
  15. Cariñena, J.F., Gracia-Bondìa, J.M., Vàrilly, J.C., 10.1088/0305-4470/23/6/015, J. Phys. A: Math. Gen., 23, 1990, 901-933, (1990) Zbl0706.60108MR1048769DOI10.1088/0305-4470/23/6/015
  16. Davidson, M., Òlafsson, G., Zhang, G., 10.1016/S0022-1236(03)00101-0, J. Funct. Anal., 204, 2003, 157-195, (2003) Zbl1035.32014MR2004748DOI10.1016/S0022-1236(03)00101-0
  17. Figueroa, H., Gracia-Bondìa, J.M., Vàrilly, J.C., 10.1063/1.528967, J. Math. Phys., 31, 1990, 2664-2671, (1990) MR1075750DOI10.1063/1.528967
  18. Folland, B., Harmonic Analysis in Phase Space, 1989, Princeton Univ. Press, (1989) Zbl0682.43001MR0983366
  19. Gracia-Bondìa, J.M., Generalized Moyal quantization on homogeneous symplectic spaces, Deformation theory and quantum groups with applications to mathematical physics (Amherst, MA, 1990), 93--114, Contemp. Math., 134, 1992, Amer. Math. Soc., Providence, RI, (1992) MR1187280
  20. Gracia-Bondìa, J.M., V¸rilly, J.C., The Moyal Representation for Spin, Ann. Physics, 190, 1989, 107-148, (1989) MR0994048
  21. Kirillov, A.A., 10.1090/gsm/064, 2004, American Mathematical Society, Providence, Rhode Island, (2004) MR2069175DOI10.1090/gsm/064
  22. Neeb, K-H., Holomorphy and Convexity in Lie Theory, de Gruyter Expositions in Mathematics, Vol. 28, 2000, Walter de Gruyter, Berlin, New-York, (2000) MR1740617
  23. Nomura, T., Berezin Transforms and Group representations, J. Lie Theory, 8, 1998, 433-440, (1998) Zbl0919.43008MR1650386
  24. Ørsted, B., Zhang, G., 10.1512/iumj.1994.43.43023, Indiana Univ. Math. J., 43, 2, 1994, 551-583, (1994) Zbl0805.46053MR1291529DOI10.1512/iumj.1994.43.43023
  25. Peetre, J., Zhang, G., A weighted Plancherel formula III. The case of a hyperbolic matrix ball, Collect. Math., 43, 1992, 273-301, (1992) MR1252736
  26. Satake, I., Algebraic structures of symmetric domains, 1971, Iwanami Sho-ten, Tokyo and Princeton Univ. Press, Princeton, NJ, (1971) MR0591460
  27. Stratonovich, R.L., On distributions in representation space, Soviet Physics. JETP, 4, 1957, 891-898, (1957) MR0088173
  28. Unterberger, A., Upmeier, H., 10.1007/BF02101491, Commun. Math. Phys., 164, 3, 1994, 563-597, (1994) Zbl0843.32019MR1291245DOI10.1007/BF02101491
  29. Zhang, G., 10.1007/s002290050109, Manuscripta Math., 97, 1998, 371-388, (1998) Zbl0920.22008MR1654800DOI10.1007/s002290050109

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.