Bifurcation problems for nonlinear elliptic variational inequalities

Marco Degiovanni

Annales de la Faculté des sciences de Toulouse : Mathématiques (1989)

  • Volume: 10, Issue: 2, page 215-258
  • ISSN: 0240-2963

How to cite

top

Degiovanni, Marco. "Bifurcation problems for nonlinear elliptic variational inequalities." Annales de la Faculté des sciences de Toulouse : Mathématiques 10.2 (1989): 215-258. <http://eudml.org/doc/73232>.

@article{Degiovanni1989,
author = {Degiovanni, Marco},
journal = {Annales de la Faculté des sciences de Toulouse : Mathématiques},
keywords = {variational bifurcation; nonsmooth analysis; abstract eigenvalue problems; elliptic variational inequalities},
language = {eng},
number = {2},
pages = {215-258},
publisher = {UNIVERSITE PAUL SABATIER},
title = {Bifurcation problems for nonlinear elliptic variational inequalities},
url = {http://eudml.org/doc/73232},
volume = {10},
year = {1989},
}

TY - JOUR
AU - Degiovanni, Marco
TI - Bifurcation problems for nonlinear elliptic variational inequalities
JO - Annales de la Faculté des sciences de Toulouse : Mathématiques
PY - 1989
PB - UNIVERSITE PAUL SABATIER
VL - 10
IS - 2
SP - 215
EP - 258
LA - eng
KW - variational bifurcation; nonsmooth analysis; abstract eigenvalue problems; elliptic variational inequalities
UR - http://eudml.org/doc/73232
ER -

References

top
  1. [1] Attouch ( H.). — Variational convergence for functions and operators, Applicable Mathematics Series, Pitman (Advanced Publishing Program), Boston, Mass. - London, 1984. Zbl0561.49012MR773850
  2. [2] Attouch ( H.), Picard ( C.). - Problèmes variationnels et théorie du potentiel non linéaire, Ann. Fac. Sci. Toulouse1, 1979, p. 89-136. Zbl0418.49012MR554374
  3. [3] Benci ( V.). - Positive solutions of some eigenvalue problems in the theory of variational inequalities, J. Math. Anal. Appl.61, 1977, p. 165-187. Zbl0432.35059MR460868
  4. [4] Benci ( V.), Micheletti ( A.M.). — Su un problema di autovalori per disequazioni variazionali, Ann. Mat. Pura Appl. (4) 107, 1975, p. 359-371. Zbl0324.49004MR412941
  5. [5] Berger ( M.S.). — On von Karman's equations and the buckling of a thin elastic plate, I the clamped plate, Comm. Pure Appl. Math.201967, p. 687-719. Zbl0162.56405MR221808
  6. [6] Berger ( M.S.), Fife ( P.C.). — Von Karman's equations and the buckling of a thin elastic plate, II plate with general edge conditions, Comm. Pure Appl. Math.21, 1968, p. 227-241. Zbl0162.56501MR229978
  7. [7] Bohme ( R.). — Die Lösung der Verzweigungsgleichungen für nichtlineare Eigenwertprobleme, Math. Z.127, 1972, p. 105-126. Zbl0254.47082MR312348
  8. [8] Gobanov ( G.), Marino ( A.), Scolozzi ( D.).- Evolution equation for the eigenvalue problem for the Laplace operator with respect to an obstacle (preprint), Dip. Mat. Pisa, 214, Pisa, 1987. 
  9. [9] Gobanov ( G.), Marino ( A.), Scolozzi ( D.). — Multiplicity of eigenvalues for the Laplace operator with respect to an obstacle and non-tangency conditions, Nonlinear Anal., in press. Zbl0716.49009
  10. [10] Dal Maso ( G.). — On the integral representation of certain local functionals, Ricerche Mat.32, 1983, p. 85-113. Zbl0543.49001MR740203
  11. [11] De Giorgi ( E.), Degiovanni ( M.), Marino ( A.), Tosques ( M.). — Evolution equations for a class of nonlinear operators, Atti Accad. Naz. Lincei Rend. Cl. Sci. Fis. Mat. Natur.. (8) 75, 1983, 1-81984. Zbl0597.47045MR780801
  12. [12] De Giorgi ( E.), Franzoni ( T.).—Su un tripo di convergenza variazionale, Rend. Sem. Mat. Brescia3, 1979, p. 63-101. 
  13. [13] Degiovanni ( M.).- Homotopical properties of a class of nonsmooth functions, Ann. Mat. Pura Appl., in press. Zbl0722.58013MR1080210
  14. [14] Degiovanni ( M.).— On the buckling of a thin elastic plate subjected to unilatera constraints, Nonlinear Variational Problems, (Isola d'Elba, 1986), Procceedings, in press. Zbl0684.73022
  15. [15] Degiovanni ( M.), Marino ( A.).— Alcuni problemi di autovalori e di biforcazione rispetto ad un ostacolo, Equazioni Differenziali e Calcolo delle Variazioni (Pisa, 1985), p. 71-93, Editrice Tecnico Scientifica, Pisa, 1985. 
  16. [16] Degiovanni ( M.), Marino ( A.).- Bifurcation for some nonlinear elliptic variational inequalities, Variational Methods in Differential Problems (Trieste, 1985), Rend. Istit. Mat. Univ.Trieste181986, p. 40-48. Zbl0636.35009MR898392
  17. [17] Degiovanni ( M.), Marino ( A.).— Non-smooth variational bifurcation, Atti Accad. Naz. Lincei Rend. Cl. Sci. Fis. Mat. Natur. (8) 81, 1987, p. 259-269, 1988. Zbl0671.58029MR999818
  18. [18] Degiovanni ( M.), Marino ( A.), Tosques ( M.).— Evolution equations with lack of convexity, Nonlinear Anal.9, 1985, p. 1401-1443. Zbl0545.46029MR820649
  19. [19] Do ( C.).-Bifurcation theory for elastic plates subjected to unilateral conditions, J. Math. Anal. Appl.601977, p. 435-448. Zbl0364.73030MR455672
  20. [20] Do ( C.). — Nonlinear bifurcation problem and buckling of an elastic plate subjected to unilateral conditions in its plane, Contemporary Developments in Continuum Mechanics and Partial Differential Equations (Proc. Internat. Sympos., Inst. Mat., Univ. Fed. Rio de Janeiro, Rio de Janeiro, 1977, p. 112-134, North-Holland Math. Studies, 30, North-Holland, Amsterdam, 1978. Zbl0401.73060MR519641
  21. [21] Fadell ( E.R.), Rabinowitz ( P.H.).- Bifurcation for odd potential operators and an alternative topological index, J. Funct. Anal.26, 1977, p. 48-67. Zbl0363.47029MR448409
  22. [22] Krasnoselskii ( M.A.). — Topological methods in the theory of nonlinear integral equations, Gosudarstv. Izdat. Techn. — Teor. Lit., Moscow, 1956. The Macmillan Co., New-York, 1964. MR96983
  23. [23] Kucera ( M.).— A new method for obtaining eigenvalues of variational inequalities : operators with multiple eigenvalues, Czechoslovak Math. J.32, 1982, p. 197-207. Zbl0621.49005MR654056
  24. [24] Kucera ( M.).-Bifurcation points of variational inequalities, Czechoslovak Math. J.32, 1982, p. 208-226. Zbl0621.49006MR654057
  25. [25] Kucera ( M.), Necas ( J.), Soucek ( J.).- The eigenvalue problem for variational inequalities and a new version of the Ljusternik-Schnirelmann theory, Nonlinear Analysis (Collection of papers in honor of Erich H. ROTHE), p. 125-143, Academic Press, New-York, 1978. Zbl0463.47041MR513782
  26. [26] Marino ( A.).— La biforcazione nel caso variazionale, Confer. Sem. Mat. Univ. Bari N.132, 1973. Zbl0323.47046MR348570
  27. [27] Marino ( A.), Scolozzi ( D.).— Goedetiche con ostacolo, Boll. Un. Mat. Ital.B (6) 2, 1983, p. 1-31. MR698480
  28. [28] McLeod ( J.B.), Turner ( R.E.L.).— Bifurcation for non-differentiable operators with an application to elasticity, Arch. Rational Mech. Anal.63, 1976, p. 1-45. Zbl0356.47030MR473953
  29. [29] Miersemann ( E.).— Eigenwertaufgaben für Variation sungleichungen, Math. Nachr.100, 1981, p. 221-228. Zbl0474.49011MR632628
  30. [30] Miersemann ( E.).— On higher eigenvalues of variational inequalities, Comment. Math. Univ. Carolin.24, 1983, p. 657-665. Zbl0638.49020MR738561
  31. [31] Quittner ( P.).- Spectral analysis of variational inequalities, Comment. Math. Univ. Carolin.27, 1986, p. 605-629. Zbl0652.49008MR873631
  32. [32] Quittner ( P.).— Bifurcation points and eigenvalues of inequalites of reaction-diffusion type, J. Reine Angew. Math.380, 1987, p. 1-13. Zbl0617.35053MR916198
  33. [33] Quittner ( P.).— Solvability and multiplicity results for variational inequalities, preprint. Zbl0698.49004MR1014128
  34. [34] Rabinowitz ( P.H.). — A bifurcation theorem for potential operators, J. Funct. Anal.25, 1977, p. 412-424. Zbl0369.47038MR463990
  35. [35] Rabinowitz ( P.H.).— Minimax methods in critical point theory with applications to differential equationsCBMS Regional Conference Series in Mathematics, 65, American Mathematical Society, Providence, R.I., 1986. Zbl0609.58002MR845785
  36. [36] Riddell ( R.C.). - Eigenvalue problems for nonlinear elliptic variational inequalities on a cone, J. Funct. Anal.26, 1977, p. 333-355. Zbl0369.47039MR460882
  37. [37] Riddell ( R.C.).- Eigenvalue problems for nonlinear elliptic variational inequalities, Nonlinear Anal.3, 1979, p. 1-33. Zbl0416.49009MR520467
  38. [38] Spanier ( E.H.). — Algebraic topology, McGraw, Hill Book Co., New-York, Toronto, Ont., London, 1966. Zbl0145.43303MR210112
  39. [39] Stampacchia ( G.). — Le problème de Dirichlet pour les équations elliptiques du second ordre à coefficients discontinus, Ann. Inst. Fourier (Grenoble)15, 1965, p. 189-257. Zbl0151.15401MR192177
  40. [40] Szulkin ( A.). — On a class of variational inequalities involving gradient operators, J. Math. Anal. Appl.100, 1984, p. 486-499. Zbl0551.49008MR743337
  41. [41] Szulkin ( A.). — On the solvability of a class of semilinear variational inequalities, Rend. Mat. (7) 4, 1984, p. 121-137. Zbl0608.35003MR807126
  42. [42] Szulkin ( A.).- Positive solutions of variational inequalities : a degree-theoretic approach, J. Differential Equations57, 1985, p. 90-111. Zbl0535.35029MR788424

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.