The conjecture of modularity of Serre: the case of conductor
Séminaire Bourbaki (2005-2006)
- Volume: 48, page 99-122
- ISSN: 0303-1179
Access Full Article
topAbstract
topHow to cite
topWintenberger, Jean-Pierre. "La conjecture de modularité de Serre : le cas de conducteur $1$." Séminaire Bourbaki 48 (2005-2006): 99-122. <http://eudml.org/doc/252166>.
@article{Wintenberger2005-2006,
abstract = {La conjecture dit qu’une représentation continue irréductible impaire du groupe de Galois de $Q$ dans un espace vectoriel de dimension $2$ sur un corps fini $F$ de caractéristique $p$ provient d’une forme modulaire. C. Khare vient de la prouver pour les représentations qui sont non ramifiées hors de $p$.},
author = {Wintenberger, Jean-Pierre},
journal = {Séminaire Bourbaki},
keywords = {modular forms; Galois representations},
language = {fre},
pages = {99-122},
publisher = {Association des amis de Nicolas Bourbaki, Société mathématique de France},
title = {La conjecture de modularité de Serre : le cas de conducteur $1$},
url = {http://eudml.org/doc/252166},
volume = {48},
year = {2005-2006},
}
TY - JOUR
AU - Wintenberger, Jean-Pierre
TI - La conjecture de modularité de Serre : le cas de conducteur $1$
JO - Séminaire Bourbaki
PY - 2005-2006
PB - Association des amis de Nicolas Bourbaki, Société mathématique de France
VL - 48
SP - 99
EP - 122
AB - La conjecture dit qu’une représentation continue irréductible impaire du groupe de Galois de $Q$ dans un espace vectoriel de dimension $2$ sur un corps fini $F$ de caractéristique $p$ provient d’une forme modulaire. C. Khare vient de la prouver pour les représentations qui sont non ramifiées hors de $p$.
LA - fre
KW - modular forms; Galois representations
UR - http://eudml.org/doc/252166
ER -
References
top- [1] V. A. Abrashkin – “Ramification in étale cohomology”, Invent. Math. 101 (1990), no. 3, p. 631–640. Zbl0761.14006MR1062798
- [2] J. Arthur & L. Clozel – Simple algebras, base change, and the advanced theory of the trace formula, Annals of Math. Studies, vol. 120, Princeton University Press, Princeton, NJ, 1989. Zbl0682.10022MR1007299
- [3] L. Berger – “Limites de représentations cristallines”, Compos. Math. 140 (2004), no. 6, p. 1473–1498. Zbl1071.11067MR2098398
- [4] L. Berger, H. Li & H. J. Zhu – “Construction of some families of 2-dimensional crystalline representations”, Math. Ann. 329 (2004), no. 2, p. 365–377. Zbl1085.11028MR2060368
- [5] D. Blasius & J. D. Rogawski – “Motives for Hilbert modular forms”, Invent. Math. 114 (1993), no. 1, p. 55–87. Zbl0829.11028MR1235020
- [6] G. Böckle – “A local-to-global principle for deformations of Galois representations”, J. reine angew. Math. 509 (1999), p. 199–236. Zbl1040.11039MR1679172
- [7] —, “Presentations of universal deformation rings”, preprint, p. 1–27, 2005.
- [8] C. Breuil – “Une remarque sur les représentations locales -adiques et les congruences entre formes modulaires de Hilbert”, Bull. Soc. Math. France 127 (1999), no. 3, p. 459–472. Zbl0933.11028MR1724405
- [9] C. Breuil & A. Mézard – “Multiplicités modulaires et représentations de et de en ”, Duke Math. J. 115 (2002), no. 2, p. 205–310, avec un appendice de Guy Henniart. Zbl1042.11030MR1944572
- [10] S. Brueggeman – “The nonexistence of certain Galois extensions unramified outside ”, J. Number Theory 75 (1999), no. 1, p. 47–52. Zbl0930.11036MR1670870
- [11] A. Brumer & K. Kramer – “Non-existence of certain semistable abelian varieties”, Manuscripta Math. 106 (2001), no. 3, p. 291–304. Zbl1073.14544MR1869222
- [12] K. Buzzard & R. Taylor – “Companion forms and weight one forms”, Ann. of Math. (2) 149 (1999), no. 3, p. 905–919. Zbl0965.11019MR1709306
- [13] H. Carayol – “Sur les représentations -adiques associées aux formes modulaires de Hilbert”, Ann. Sci. École Norm. Sup. (4) 19 (1986), no. 3, p. 409–468. Zbl0616.10025MR870690
- [14] —, “Sur les représentations galoisiennes modulo attachées aux formes modulaires”, Duke Math. J. 59 (1989), no. 3, p. 785–801. Zbl0703.11027MR1046750
- [15] —, “Formes modulaires et représentations galoisiennes à valeurs dans un anneau local complet”, in -adic monodromy and the Birch and Swinnerton-Dyer conjecture (Boston 1991), Contemp. Math., vol. 165, Amer. Math. Soc., Providence, 1994, p. 213–237. Zbl0812.11036
- [16] H. Darmon, F. Diamond & R. Taylor – “Fermat’s last theorem”, in Current developments in mathematics, Internat. Press, Cambridge, MA, 1995, p. 1–154. Zbl0877.11035MR1474977
- [17] P. Deligne – “Formes modulaires et représentations -adiques”, in Séminaire Bourbaki, Lect. Notes in Math., vol. 179, Springer, Berlin, 1971, exp. no 355, p. 139–172. Zbl0206.49901
- [18] —, “Les constantes des équations fonctionnelles des fonctions ”, in Modular functions of one variable, II (Antwerp 1972), Lect. Notes in Math., vol. 349, Springer, Berlin, 1973, p. 501–597. Zbl0271.14011MR349635
- [19] P. Deligne & J.-P. Serre – “Formes modulaires de poids ”, Ann. Sci. École Norm. Sup. (4) 7 (1974), p. 507–530 (1975). Zbl0321.10026MR379379
- [20] F. Diamond – “An extension of Wiles’ results”, in Modular forms and Fermat’s last theorem (Boston, MA, 1995), Springer, New York, 1997, p. 475–489. Zbl0917.11021MR1638490
- [21] F. Diamond & R. Taylor – “Lifting modular mod representations”, Duke Math. J. 74 (1994), no. 2, p. 253–269. Zbl0809.11025MR1272977
- [22] —, “Nonoptimal levels of mod modular representations”, Invent. Math. 115 (1994), no. 3, p. 435–462. Zbl0847.11025MR1262939
- [23] L. V. Dieulefait – “Existence of families of Galois representations and new cases of the Fontaine-Mazur conjecture”, J. reine angew. Math. 577 (2004), p. 147–151. Zbl1065.11037MR2108216
- [24] B. Edixhoven – “The weight in Serre’s conjectures on modular forms”, Invent. Math. 109 (1992), no. 3, p. 563–594. Zbl0777.11013MR1176206
- [25] —, “Serre’s conjecture”, in Modular forms and Fermat’s last theorem (Boston, MA, 1995), Springer, New York, 1997, p. 209–242. Zbl0918.11023MR1638480
- [26] J. S. Ellenberg – “Serre’s conjecture over ”, Ann. of Math. (2) 161 (2005), no. 3, p. 1111–1142. Zbl1153.11312MR2180399
- [27] J.-M. Fontaine – “Représentations -adiques potentiellement semi-stables”, in [29], p. 321–347. Zbl0873.14020MR1293977
- [28] —, “Il n’y a pas de variété abélienne sur ”, Invent. Math. 81 (1985), no. 3, p. 515–538. Zbl0612.14043MR807070
- [29] —(’ed.) – Périodes -adiques (Bures-sur-Yvette 1988), Astérisque, vol. 223, Soc. Math. France, Paris, 1994. Zbl0802.00019
- [30] J.-M. Fontaine & G. Laffaille – “Construction de représentations -adiques”, Ann. Sci. École Norm. Sup. (4) 15 (1982), no. 4, p. 547–608. Zbl0579.14037MR707328
- [31] J.-M. Fontaine & B. Mazur – “Geometric Galois representations”, in Elliptic curves, modular forms, & Fermat’s last theorem (Hong Kong 1993), Ser. Number Theory, vol. I, Internat. Press, Cambridge, MA, 1995, p. 41–78. Zbl0839.14011MR1363495
- [32] B. H. Gross – “A tameness criterion for Galois representations associated to modular forms (mod )”, Duke Math. J. 61 (1990), no. 2, p. 445–517. Zbl0743.11030MR1074305
- [33] H. Hida – “On -adic Hecke algebras for over totally real fields”, Ann. of Math. (2) 128 (1988), no. 2, p. 295–384. Zbl0658.10034MR960949
- [34] C. Khare – “Serre’s modularity conjecture : the level one case”,Duke Math. J. 134 (2006), no. 3, p. 557–589. Zbl1105.11013MR2254626
- [35] —, “Serre’s modularity conjecture : a survey of the level one case”. Preprint 2006, http://www.math.utah.edu/ shekhar/papers.html, à paraître dans les Actes de “-functions and Galois representations”(Durham 2004).
- [36] C. Khare & J.-P. Wintenberger – “On Serre’s reciprocity conjecture for 2-dimensional mod representations of the Galois group ”, arXiv : math.NT/0412076, 2004. Zbl1196.11076
- [37] M. Kisin – “Modularity of some geometric Galois representations”. Preprint 2005, http://www.math.uchicago.edu/ kisin/preprints.html, à paraître dans les Actes de “-functions and Galois representations”(Durham 2004). Zbl1171.11035MR2392362
- [38] J. Manoharmayum – “Serre’s conjecture for mod 7 Galois representations”, in Modular curves and abelian varieties, Progr. Math., vol. 224, Birkhäuser, Basel, 2004, p. 141–149. Zbl1069.11020MR2058648
- [39] B. Mazur – “An introduction to the deformation theory of Galois representations”, in Modular forms and Fermat’s last theorem (Boston, MA, 1995), Springer, New York, 1997, p. 243–311. Zbl0901.11015MR1638481
- [40] L. Moret-Bailly – “Groupes de Picard et problèmes de Skolem. I, II”, Ann. Sci. École Norm. Sup. (4) 22 (1989), no. 2, p. 161–179, 181–194. Zbl0704.14015MR1005158
- [41] R. Ramakrishna – “Deforming Galois representations and the conjectures of Serre and Fontaine-Mazur”, Ann. of Math. (2) 156 (2002), no. 1, p. 115–154. Zbl1076.11035MR1935843
- [42] K. A. Ribet – “Galois representations attached to eigenforms with Nebentypus”, in Modular functions of one variable, V (Bonn 1976), Lect. Notes in Math., vol. 601, Springer, Berlin, 1977, p. 17–51. Zbl0363.10015MR453647
- [43] —, “Report on mod representations of ”, in Motives (Seattle, WA, 1991), Proc. Sympos. Pure Math., vol. 55, Amer. Math. Soc., Providence, 1994, p. 639–676. MR1265566
- [44] K. A. Ribet & W. A. Stein – “Lectures on Serre’s conjectures”, in Arithmetic algebraic geometry (Park City 1999), IAS/Park City Math. Ser., vol. 9, Amer. Math. Soc., Providence, 2001, p. 143–232. Zbl1160.11327MR1860042
- [45] T. Saito – “Hilbert modular forms and -adic Hodge theory”. Preprint 2004, arXiv : math/0612077. Zbl1259.11060MR2551990
- [46] —, “Modular forms and -adic Hodge theory”, Invent. Math. 129 (1997), no. 3, p. 607–620. Zbl0877.11034MR1465337
- [47] D. Savitt – “On a conjecture of Conrad, Diamond, and Taylor”, Duke Math. J. 128 (2005), no. 1, p. 141–197. Zbl1101.11017MR2137952
- [48] R. Schoof – “Abelian varieties over with bad reduction in one prime only”, Compos. Math. 141 (2005), no. 4, p. 847–868. Zbl1173.11333MR2148199
- [49] J.-P. Serre – “Formes modulaires et fonctions zêta -adiques”, in Modular functions of one variable, III (Antwerp 1972), Lect. Notes in Math., vol. 350, Springer, Berlin, 1973, p. 191–268. Zbl0277.12014MR404145
- [50] —, “Valeurs propres des opérateurs de Hecke modulo ”, in Journées Arithmétiques (Bordeaux 1974), Astérisque, vol. 24-25, Soc. Math. France, Paris, 1975, p. 109–117.
- [51] —, Œuvres. Vol. III, Springer-Verlag, Berlin, 1986, 1972–1984. Zbl0849.01049
- [52] —, “Sur les représentations modulaires de degré de ”, Duke Math. J. 54 (1987), no. 1, p. 179–230. Zbl0641.10026
- [53] C. M. Skinner & A. J. Wiles – “Residually reducible representations and modular forms”, Publ. Math. Inst. Hautes Études Sci.89 (2000), p. 5–126. Zbl1005.11030MR1793414
- [54] —, “Base change and a problem of Serre”, Duke Math. J. 107 (2001), no. 1, p. 15–25. Zbl1016.11017MR1815248
- [55] —, “Nearly ordinary deformations of irreducible residual representations”, Ann. Fac. Sci. Toulouse Math. (6) 10 (2001), no. 1, p. 185–215. Zbl1024.11036MR1928993
- [56] H. P. F. Swinnerton-Dyer – “On -adic representations and congruences for coefficients of modular forms”, in Modular functions of one variable, III (Antwerp 1972), Lect. Notes in Math., vol. 350, Springer, Berlin, 1973, p. 1–55. Zbl0267.10032MR406931
- [57] J. Tate – “The non-existence of certain Galois extensions of unramified outside ”, in Arithmetic geometry (Tempe, AZ, 1993), Contemp. Math., vol. 174, Amer. Math. Soc., Providence, 1994, p. 153–156. Zbl0814.11057MR1299740
- [58] R. Taylor – “On Galois representations associated to Hilbert modular forms, I”, Invent. Math. 98 (1989), no. 2, p. 265–280. Zbl0705.11031MR1016264
- [59] —, “On Galois representations associated to Hilbert modular forms, II”, in Elliptic curves, modular forms, & Fermat’s last theorem (Hong Kong 1993), Ser. Number Theory, vol. I, Internat. Press, Cambridge, MA, 1995, p. 41–78. Zbl0836.11017MR1363502
- [60] —, “On the meromorphic continuation of degree two L-functions”, Doc. Math., extra volume : John H. Coates’ Sixtieth Birthday (2006), p. 729-779. Zbl1138.11051MR2290604
- [61] —, “Remarks on a conjecture of Fontaine and Mazur”, J. Inst. Math. Jussieu 1 (2002), no. 1, p. 125–143. Zbl1047.11051MR1954941
- [62] —, “On icosahedral Artin representations. II”, Amer. J. Math. 125 (2003), no. 3, p. 549–566. Zbl1031.11031MR1981033
- [63] —, “Galois representations”, Ann. Fac. Sci. Toulouse Math. (6) 13 (2004), no. 1, p. 73–119. Zbl1074.11030MR2060030
- [64] R. Taylor & A. Wiles – “Ring-theoretic properties of certain Hecke algebras”, Ann. of Math. (2) 141 (1995), no. 3, p. 553–572. Zbl0823.11030MR1333036
- [65] T. Tsuji – Semi-stable conjecture of Fontaine-Jannsen : a survey, Astérisque, vol. 279, Soc. Math. France, Paris, 2002, Cohomologies -adiques et applications arithmétiques, II. Zbl1041.14003MR1922833
- [66] J. Tunnell – “Artin’s conjecture for representations of octahedral type”, Bull. Amer. Math. Soc. (N.S.) 5 (1981), no. 2, p. 173–175. Zbl0475.12016MR621884
- [67] A. Wiles – “Modular elliptic curves and Fermat’s last theorem”, Ann. of Math. (2) 141 (1995), no. 3, p. 443–551. Zbl0823.11029MR1333035
- [68] J.-P. Wintenberger – “On -Adic Representations of ”, Doc. Math., extra volume : John H. Coates’ Sixtieth Birthday (2006), p. 819-827. Zbl1137.11070MR2290606
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.