Rate of convergence in singular perturbations

Wilfred M. Greenlee

Annales de l'institut Fourier (1968)

  • Volume: 18, Issue: 2, page 135-191
  • ISSN: 0373-0956

How to cite

top

Greenlee, Wilfred M.. "Rate of convergence in singular perturbations." Annales de l'institut Fourier 18.2 (1968): 135-191. <http://eudml.org/doc/73954>.

@article{Greenlee1968,
author = {Greenlee, Wilfred M.},
journal = {Annales de l'institut Fourier},
keywords = {partial differential equations},
language = {eng},
number = {2},
pages = {135-191},
publisher = {Association des Annales de l'Institut Fourier},
title = {Rate of convergence in singular perturbations},
url = {http://eudml.org/doc/73954},
volume = {18},
year = {1968},
}

TY - JOUR
AU - Greenlee, Wilfred M.
TI - Rate of convergence in singular perturbations
JO - Annales de l'institut Fourier
PY - 1968
PB - Association des Annales de l'Institut Fourier
VL - 18
IS - 2
SP - 135
EP - 191
LA - eng
KW - partial differential equations
UR - http://eudml.org/doc/73954
ER -

References

top
  1. [1] R. ADAMS, N. ARONSZAJN, and M. HANNA, Theory of Bessel potentials, Part. III, In preparation as a Univ. of Kansas Tech. Rep. Zbl0176.09902
  2. [2] R. ADAMS, N. ARONSZAJN and K. T. SMITH, Theory of Bessel potentials, Part. II, Revised Version, Univ. of Kansas Tech. Rep. 8 (new series), 1964. Ann. Inst. Fourier (Grenoble, 17, 2 (1967)). Zbl0185.19703
  3. [3] S. AGMON, Lectures on elliptic boundary value problems. Van Nostrand, 1965. Zbl0142.37401MR31 #2504
  4. [4] N. ARONSZAJN, Potentiels Besseliens, Ann. Inst. Fourier (Grenoble) 15 (1965), 43-58. Zbl0141.30403MR32 #1549
  5. [5] N. ARONSZAJN and K. T. SMITH, Functional spaces and functiona completion, Ann. Inst. Fourier (Grenoble), 6 (1955-1956), 125-1851. Zbl0071.33003MR18,319c
  6. [6] N. ARONSZAJN and K. T. SMITH, Theory of Bessel potentials, I. Ann Inst. Fourier (Grenoble), 11 (1961), 385-475. Zbl0102.32401MR26 #1485
  7. [7] P. GRISVARD, Caractérisation de quelques espaces d'interpolation. Arch. Rational Mech. Anal., 25 (1967), 40-63. Zbl0187.05901MR35 #4718
  8. [8] D. HUET, Phénomènes de perturbation singulière dans les problèmes aux limites. Ann. Inst. Fourier (Grenoble), 10 (1960), 61-150. Zbl0128.32904MR22 #9737
  9. [9] D. HUET, Perturbations singulières. C.R. Acad. Sci. Paris, 259 (1964), 4213-4215. Zbl0137.29902MR30 #2223
  10. [10] E. JAHNKE and F. EMDE, Tables of functions with formulae and curves, Dover, 1943. Zbl0061.29906
  11. [11] J. KADLEC, The regularity of the solution of the Poisson problem in a domain whose boundary is similar to that of a convex domain, Czechoslovak Math. J., 14 (89) (1964), 386-393 (In Russian). Zbl0166.37703MR30 #329
  12. [12] T. KATO, Quadratic forms in Hilbert spaces and asymptotic perturbation series, Dep't. of Math., Univ. of Calif., Berkeley, (1955). 
  13. [13] P. D. LAX, On Cauchy's problem for hyperbolic equations and the differentiability of solutions of elliptic equations, Comm. Pure Appl Math., 8 (1955), 615-633. Zbl0067.07502MR17,1212c
  14. [14] P. D. LAX and A. N. MILGRAM, Parabolic equations, Contributions to the theory of partial differential equations, pp. 167-190, Ann. of Math. Studies, no. 33, Princeton Univ. Press, (1954). Zbl0058.08703MR16,709b
  15. [15] J. L. LIONS, Espaces intermédiaires entre espaces hilbertiens et applications, Bull. Math. Soc. Sci. Math. Phys. R.P. Roumaine (N. S.), 2 (50), (1958), 419-432. Zbl0097.09501MR27 #1812
  16. [16] J. L. LIONS, Équations différentielles opérationnelles et problèmes aux limites, Springer-Verlag, 1961. Zbl0098.31101
  17. [17] J. L. LIONS, and E. MAGENES, Problemi ai limiti non omogenei, I. Ann. Scuola Norm. Sup. Pisa (3), 14 (1960), 269-308. Zbl0095.30303MR24 #A3409
  18. [18] J. L. LIONS, and E. MAGENES, Problemi ai limiti non omogenei. III. Ann. Scuola Norm. Sup. Pisa (3), 15 (1961), 41-103. Zbl0101.07901
  19. [19] J. L. LIONS and E. MAGENES, Problèmes aux limites non homogènes. IV. Ann. Scuola Norm. Sup. Pisa (3), 15 (1961), 311-326. Zbl0115.31302MR25 #4351
  20. [20] J. L. LIONS and E. MAGENES, Problèmes aux limites non homogènes, VI, J. Analyse Math., 11 (1963), 165-188. Zbl0117.06904MR28 #4230
  21. [21] L. NIRENBERG, Remarks on strongly elliptic partial differential equations, Comm. Pure Appl. Math., 8 (1955), 649-675. Zbl0067.07602MR17,742d
  22. [22] B. A. TON, Elliptic boundary problems with a small parameter, Jour. Math. Anal. Appl., 14 (1966), 341-358. Zbl0139.05803MR33 #4452
  23. [1′] K. FRIEDRICHS, Asymptotic phenomena in mathematical physics Bull. Amer. Math. Soc., 61 (1955), 485-504. Zbl0068.16406MR17,615d
  24. [2′] T. KATO, Perturbation theory of semi-bounded operators, Math. Annalen, 125 (1953), 435-447. Zbl0050.34502MR14,990b
  25. [3′] T. KATO, Perturbation theory for linear operators, Springer-Verlag, 1966. Zbl0148.12601MR34 #3324
  26. [4′] J. MOSER, Singular perturbation of eigenvalue problems for linear differential equations of even order, Comm. Pure and Appl. Math., 8 (1955), 251-278. Zbl0064.33301MR17,154c
  27. [5′] RAYLEIGH, Lord, Theory of Sound, Vol. I and II, Dover, 1945. Zbl0061.45904MR7,500e
  28. [6′] B. A. TON, Singular perturbations of non-linear elliptic and parabolic variational boundary-value problems, Can. J. Math., 18 (1966), 861-872. Zbl0151.15004MR33 #6104
  29. [7′] B. A. TON, Singular perturbations and non-linear parabolic boundary value problems, Jour. Math. Anal. Appl., 17 (1967), 248-261. Zbl0143.33502MR34 #7986
  30. [8′] M. I. VIŠIK and L. A. LYUSTERNIK, Regular degeneration and boundary layer for linear differential equations with small paramater, Uspehi Mat. Nauk. (N.S.), 12 (1957), no. 5 (77), 3-122 ; Am. Math. Soc. Trans. Ser., 2, 20 (1962), 239-364. Zbl0122.32402
  31. [9′] W. WASOW, Asymptotic expansions for ordinary differential equations, (Interscience), Wiley, 1966. 

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.