Une borne inférieure pour le volume d'une variété riemannienne en fonction du rayon d'injectivité
Annales de l'institut Fourier (1980)
- Volume: 30, Issue: 3, page 259-265
- ISSN: 0373-0956
Access Full Article
topAbstract
topHow to cite
topReferences
top- [1] M. BERGER, Some relations between volume, injectivity radius and convexity radius in Riemannian manifolds, dans Differential Geometry and Relativity, D. Reidel, 1976. Zbl0342.53038MR56 #6562
- [2] M. BERGER, Volume et rayon d'injectivité dans les variétés riemanniennes de dimension 3, Osaka Math. J., 14 (1977), 191-200. Zbl0353.53028MR57 #7451
- [3] M. BERGER et J.L. KAZDAN, A Sturm-Liouville Inequality with Applications to an Isoperimetric Inequality for Volume, Injectivity Radius and to Wiedersehen Manifolds, p. 367-377, General Inequalities 2, Edited by E.F. Beckenback, Birkhaüser, 1980. Zbl0445.53031MR82k:53060
- [4] A. BESSE, Manifolds all of whose Geodesics are Closed, Ergebnisse der Mathematik, n° 93, Springer, 1978. Zbl0387.53010MR80c:53044
- [5] C. CROKE, Some isoperimetric inequalities and eigenvalue estimates, à paraître dans Ann. Sci. Ecole Norm. Sup. Zbl0465.53032
- [6] J.L. KAZDAN, An Inequality Arising in Geometry, Appendice E de [4].