Caractérisations des zéros des fonctions de certaines classes de type Nevanlinna dans le bidisque

Philippe Charpentier

Annales de l'institut Fourier (1984)

  • Volume: 34, Issue: 1, page 57-98
  • ISSN: 0373-0956

Abstract

top
In this paper we consider the zeros sets of holomorphic functions in the bidisk for which the logarithm of the radius satisfies a growth condition: we caracterize by Blaschke condition the zeros sets of the functions satisfying the condition D 2 δ D 2 ( z ) α log + | f ( z ) | d λ ( z ) < , and we give sufficients conditions for smaller classes, in particular for the classical Nevanlinna class of the bidisk.

How to cite

top

Charpentier, Philippe. "Caractérisations des zéros des fonctions de certaines classes de type Nevanlinna dans le bidisque." Annales de l'institut Fourier 34.1 (1984): 57-98. <http://eudml.org/doc/74622>.

@article{Charpentier1984,
abstract = {Dans cet article, nous étudions les zéros des fonctions holomorphes dans le bidisque dont le logarithme du module vérifie une condition de croissance : nous caractérisons par une condition de type Blaschke les zéros des fonctions vérifiant\begin\{\}\int \_\{D^2\} \delta \_\{\partial D^2\} (z)^\alpha \log ^+\vert f(z)\vert d\lambda (z) &lt; \infty ,\end\{\}pour $\alpha &gt;-1$, et nous donnons les conditions suffisantes pour des classes plus petites, en particulier pour la classe de Nevanlinna du bidisque.},
author = {Charpentier, Philippe},
journal = {Annales de l'institut Fourier},
keywords = {bidisk; zero set of holomorphic function; Nevanlinna class; current},
language = {fre},
number = {1},
pages = {57-98},
publisher = {Association des Annales de l'Institut Fourier},
title = {Caractérisations des zéros des fonctions de certaines classes de type Nevanlinna dans le bidisque},
url = {http://eudml.org/doc/74622},
volume = {34},
year = {1984},
}

TY - JOUR
AU - Charpentier, Philippe
TI - Caractérisations des zéros des fonctions de certaines classes de type Nevanlinna dans le bidisque
JO - Annales de l'institut Fourier
PY - 1984
PB - Association des Annales de l'Institut Fourier
VL - 34
IS - 1
SP - 57
EP - 98
AB - Dans cet article, nous étudions les zéros des fonctions holomorphes dans le bidisque dont le logarithme du module vérifie une condition de croissance : nous caractérisons par une condition de type Blaschke les zéros des fonctions vérifiant\begin{}\int _{D^2} \delta _{\partial D^2} (z)^\alpha \log ^+\vert f(z)\vert d\lambda (z) &lt; \infty ,\end{}pour $\alpha &gt;-1$, et nous donnons les conditions suffisantes pour des classes plus petites, en particulier pour la classe de Nevanlinna du bidisque.
LA - fre
KW - bidisk; zero set of holomorphic function; Nevanlinna class; current
UR - http://eudml.org/doc/74622
ER -

References

top
  1. [1] A. BONAMI et Ph. CHARPENTIER, Solutions de l'équation ∂ et zéros de la classe de Nevanlinna dans certains domaines faiblement pseudoconvexes, Ann. Inst. Fourier, 32-4 (1982), 53-89. Zbl0493.32005MR85f:32003
  2. [2] Ph. CHARPENTIER, Sur la formule de Jensen et les zéros des fonctions holomorphes dans le polydisque, Math. Ann., 242 (1979), 27-46. Zbl0387.32003MR81e:32004
  3. [3] Ph. CHARPENTIER, Formules explicites pour les solutions minimales de l'équation ∂u = f dans la boule et dans le polydisque de Cn, Ann. Inst. Fourier, 30-4 (1980), 121-154. Zbl0425.32009
  4. [4] S.V. DAUTOV and G.M. HENKIN, Zeros of holomorphic functions of finite order and weighted estimates for solutions of the ∂-equation, Mat. Sb., 107 (1979), 163-174. Zbl0392.32001MR80b:32005
  5. [5] G.M. HENKIN, H. Lewy's equation and analysis on a pseudoconvex manifold, II, Math. USSR Sb., 31 (1977), 63-94. Zbl0388.35052
  6. [6] P. LELONG, Fonctionnelles analytiques et fonctions entières (n variables), Montréal, Presses de l'Univ. Montréal (1968). Zbl0194.38801MR57 #6483
  7. [7] H. SKODA, Valeurs au bord pour les solutions de l'équation ∂ et caractérisation des zéros des fonctions de la classe de Nevanlinna, Bull. Soc. Math. France, (1976), 225-299. Zbl0351.31007MR56 #8913
  8. [8] N. VAROPOULOS, BMO functions and the ∂-equation, Pacific J. Math., 71 (1977), 221-273. Zbl0371.35035MR58 #22639a

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.