On the discrepancy of sequences associated with the sum-of-digits function
Gerhard Larcher; N. Kopecek; R. F. Tichy; G. Turnwald
Annales de l'institut Fourier (1987)
- Volume: 37, Issue: 3, page 1-17
- ISSN: 0373-0956
Access Full Article
topAbstract
topHow to cite
topLarcher, Gerhard, et al. "On the discrepancy of sequences associated with the sum-of-digits function." Annales de l'institut Fourier 37.3 (1987): 1-17. <http://eudml.org/doc/74765>.
@article{Larcher1987,
abstract = {If $w=(q_k)_\{k\in \{\bf N\}\}$ denotes the sequence of best approximation denominators to a real $\alpha $, and $s_\alpha (n)$ denotes the sum of digits of $n$ in the digit representation of $n$ to base $w$, then for all $x$ irrational, the sequence $(s_\alpha (n)\cdot x)_\{n\in \{\bf N\}\}$ is uniformly distributed modulo one. Discrepancy estimates for the discrepancy of this sequence are given, which turn out to be best possible if $\alpha $ has bounded continued fraction coefficients.},
author = {Larcher, Gerhard, Kopecek, N., Tichy, R. F., Turnwald, G.},
journal = {Annales de l'institut Fourier},
keywords = {uniform distribution; sum-of-digits function; digit representation; discrepancy},
language = {eng},
number = {3},
pages = {1-17},
publisher = {Association des Annales de l'Institut Fourier},
title = {On the discrepancy of sequences associated with the sum-of-digits function},
url = {http://eudml.org/doc/74765},
volume = {37},
year = {1987},
}
TY - JOUR
AU - Larcher, Gerhard
AU - Kopecek, N.
AU - Tichy, R. F.
AU - Turnwald, G.
TI - On the discrepancy of sequences associated with the sum-of-digits function
JO - Annales de l'institut Fourier
PY - 1987
PB - Association des Annales de l'Institut Fourier
VL - 37
IS - 3
SP - 1
EP - 17
AB - If $w=(q_k)_{k\in {\bf N}}$ denotes the sequence of best approximation denominators to a real $\alpha $, and $s_\alpha (n)$ denotes the sum of digits of $n$ in the digit representation of $n$ to base $w$, then for all $x$ irrational, the sequence $(s_\alpha (n)\cdot x)_{n\in {\bf N}}$ is uniformly distributed modulo one. Discrepancy estimates for the discrepancy of this sequence are given, which turn out to be best possible if $\alpha $ has bounded continued fraction coefficients.
LA - eng
KW - uniform distribution; sum-of-digits function; digit representation; discrepancy
UR - http://eudml.org/doc/74765
ER -
References
top- [1] J. COQUET, Représentation des entiers naturels et suites uniformément équiréparties, Ann. Inst. Fourier, 32-1 (1982), 1-5. Zbl0463.10039MR83h:10071
- [2] J. COQUET, Répartition de la somme des chiffres associée à une fraction continue, Bull. Soc. Roy. Liège, 52 (1982), 161-165. Zbl0497.10040MR84e:10060
- [3] J. COQUET, G. RHIN, Ph. TOFFIN, Représentations des entiers naturels et indépendance statistique 2, Ann. Inst. Fourier, 31-1 (1981), 1-15. Zbl0437.10026MR83e:10071b
- [4] E. HLAWKA, Theorie der Gleichverteilung, Bibl. Inst. Mannheim-Wien-Zürich, 1979. Zbl0406.10001MR80j:10057
- [5] H. KAWAI, α-additive Functions and Uniform Distribution modulo one, Proc. Japan. Acad. Ser. A., 60 (1984), 299-301. Zbl0556.10037MR86d:11056
- [6] J.F. KOKSMA, Some theorems on diophantine inequalities, Math. Centrum Amsterdam, Scriptum no. 5, 1950. Zbl0038.02803MR12,394c
- [7] L. KUIPERS and H. NIEDERREITER, Uniform distribution of sequences, John Wiley and Sons, New York, 1974. Zbl0281.10001MR54 #7415
- [8] W.M. SCHMIDT, Simultaneous approximation to algebraic numbers by rationals, Acta Math., 125 (1970), 189-201. Zbl0205.06702MR42 #3028
- [9] R.F. TICHY and G. TURNWALD, on the discrepancy of some special sequences, J. Number Th., 26 (1987), 68-78. Zbl0628.10052MR88g:11048
Citations in EuDML Documents
topNotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.