On the discrepancy of sequences associated with the sum-of-digits function

Gerhard Larcher; N. Kopecek; R. F. Tichy; G. Turnwald

Annales de l'institut Fourier (1987)

  • Volume: 37, Issue: 3, page 1-17
  • ISSN: 0373-0956

Abstract

top
If w = ( q k ) k N denotes the sequence of best approximation denominators to a real α , and s α ( n ) denotes the sum of digits of n in the digit representation of n to base w , then for all x irrational, the sequence ( s α ( n ) · x ) n N is uniformly distributed modulo one. Discrepancy estimates for the discrepancy of this sequence are given, which turn out to be best possible if α has bounded continued fraction coefficients.

How to cite

top

Larcher, Gerhard, et al. "On the discrepancy of sequences associated with the sum-of-digits function." Annales de l'institut Fourier 37.3 (1987): 1-17. <http://eudml.org/doc/74765>.

@article{Larcher1987,
abstract = {If $w=(q_k)_\{k\in \{\bf N\}\}$ denotes the sequence of best approximation denominators to a real $\alpha $, and $s_\alpha (n)$ denotes the sum of digits of $n$ in the digit representation of $n$ to base $w$, then for all $x$ irrational, the sequence $(s_\alpha (n)\cdot x)_\{n\in \{\bf N\}\}$ is uniformly distributed modulo one. Discrepancy estimates for the discrepancy of this sequence are given, which turn out to be best possible if $\alpha $ has bounded continued fraction coefficients.},
author = {Larcher, Gerhard, Kopecek, N., Tichy, R. F., Turnwald, G.},
journal = {Annales de l'institut Fourier},
keywords = {uniform distribution; sum-of-digits function; digit representation; discrepancy},
language = {eng},
number = {3},
pages = {1-17},
publisher = {Association des Annales de l'Institut Fourier},
title = {On the discrepancy of sequences associated with the sum-of-digits function},
url = {http://eudml.org/doc/74765},
volume = {37},
year = {1987},
}

TY - JOUR
AU - Larcher, Gerhard
AU - Kopecek, N.
AU - Tichy, R. F.
AU - Turnwald, G.
TI - On the discrepancy of sequences associated with the sum-of-digits function
JO - Annales de l'institut Fourier
PY - 1987
PB - Association des Annales de l'Institut Fourier
VL - 37
IS - 3
SP - 1
EP - 17
AB - If $w=(q_k)_{k\in {\bf N}}$ denotes the sequence of best approximation denominators to a real $\alpha $, and $s_\alpha (n)$ denotes the sum of digits of $n$ in the digit representation of $n$ to base $w$, then for all $x$ irrational, the sequence $(s_\alpha (n)\cdot x)_{n\in {\bf N}}$ is uniformly distributed modulo one. Discrepancy estimates for the discrepancy of this sequence are given, which turn out to be best possible if $\alpha $ has bounded continued fraction coefficients.
LA - eng
KW - uniform distribution; sum-of-digits function; digit representation; discrepancy
UR - http://eudml.org/doc/74765
ER -

References

top
  1. [1] J. COQUET, Représentation des entiers naturels et suites uniformément équiréparties, Ann. Inst. Fourier, 32-1 (1982), 1-5. Zbl0463.10039MR83h:10071
  2. [2] J. COQUET, Répartition de la somme des chiffres associée à une fraction continue, Bull. Soc. Roy. Liège, 52 (1982), 161-165. Zbl0497.10040MR84e:10060
  3. [3] J. COQUET, G. RHIN, Ph. TOFFIN, Représentations des entiers naturels et indépendance statistique 2, Ann. Inst. Fourier, 31-1 (1981), 1-15. Zbl0437.10026MR83e:10071b
  4. [4] E. HLAWKA, Theorie der Gleichverteilung, Bibl. Inst. Mannheim-Wien-Zürich, 1979. Zbl0406.10001MR80j:10057
  5. [5] H. KAWAI, α-additive Functions and Uniform Distribution modulo one, Proc. Japan. Acad. Ser. A., 60 (1984), 299-301. Zbl0556.10037MR86d:11056
  6. [6] J.F. KOKSMA, Some theorems on diophantine inequalities, Math. Centrum Amsterdam, Scriptum no. 5, 1950. Zbl0038.02803MR12,394c
  7. [7] L. KUIPERS and H. NIEDERREITER, Uniform distribution of sequences, John Wiley and Sons, New York, 1974. Zbl0281.10001MR54 #7415
  8. [8] W.M. SCHMIDT, Simultaneous approximation to algebraic numbers by rationals, Acta Math., 125 (1970), 189-201. Zbl0205.06702MR42 #3028
  9. [9] R.F. TICHY and G. TURNWALD, on the discrepancy of some special sequences, J. Number Th., 26 (1987), 68-78. Zbl0628.10052MR88g:11048

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.