A -adic measure attached to the zeta functions associated with two elliptic modular forms. II
Annales de l'institut Fourier (1988)
- Volume: 38, Issue: 3, page 1-83
- ISSN: 0373-0956
Access Full Article
topAbstract
topHow to cite
topHida, Haruzo. "A $p$-adic measure attached to the zeta functions associated with two elliptic modular forms. II." Annales de l'institut Fourier 38.3 (1988): 1-83. <http://eudml.org/doc/74808>.
@article{Hida1988,
abstract = {Let $f=\sum ^\{\infty \}_\{n=1\}a(n)q^ n$ and $g=\sum ^\{\infty \}_\{n=1\}b(n)q^ n$ be holomorphic common eigenforms of all Hecke operators for the congruence subgroup $\Gamma _ 0(N)$ of $SL_ 2(\{\bf Z\})$ with “Nebentypus” character $\psi $ and $\xi $ and of weight $k$ and $\ell $, respectively. Define the Rankin product of $f$ and $g$ by\begin\{\} \{\cal D\}\_ N(s,f,g)=(\sum ^\{\infty \}\_\{n=1\}\psi \xi (n)n^\{k+\ell -2s- 2\})(\sum ^\{\infty \}\_\{n\ =1\}a(n)b(n)n^\{-s\}). \end\{\}Supposing $f$ and $g$ to be ordinary at a prime $p\ge 5$, we shall construct a $p$-adically analytic $L$-function of three variables which interpolate the values $\{\{\cal D\}_ N(\ell +m,f,g)\over \pi ^\{\ell +2m+1\}< f,f>\}$ for integers $m$ with $0\le m< k-1,$ by regarding all the ingredients $m$, $f$ and $g$ as variables. Here $\langle f,f\rangle $ is the Petersson self-inner product of $f$.},
author = {Hida, Haruzo},
journal = {Annales de l'institut Fourier},
keywords = {Hecke operators; congruence subgroup; Rankin product; p-adically analytic; p-adic interpolation; special values},
language = {eng},
number = {3},
pages = {1-83},
publisher = {Association des Annales de l'Institut Fourier},
title = {A $p$-adic measure attached to the zeta functions associated with two elliptic modular forms. II},
url = {http://eudml.org/doc/74808},
volume = {38},
year = {1988},
}
TY - JOUR
AU - Hida, Haruzo
TI - A $p$-adic measure attached to the zeta functions associated with two elliptic modular forms. II
JO - Annales de l'institut Fourier
PY - 1988
PB - Association des Annales de l'Institut Fourier
VL - 38
IS - 3
SP - 1
EP - 83
AB - Let $f=\sum ^{\infty }_{n=1}a(n)q^ n$ and $g=\sum ^{\infty }_{n=1}b(n)q^ n$ be holomorphic common eigenforms of all Hecke operators for the congruence subgroup $\Gamma _ 0(N)$ of $SL_ 2({\bf Z})$ with “Nebentypus” character $\psi $ and $\xi $ and of weight $k$ and $\ell $, respectively. Define the Rankin product of $f$ and $g$ by\begin{} {\cal D}_ N(s,f,g)=(\sum ^{\infty }_{n=1}\psi \xi (n)n^{k+\ell -2s- 2})(\sum ^{\infty }_{n\ =1}a(n)b(n)n^{-s}). \end{}Supposing $f$ and $g$ to be ordinary at a prime $p\ge 5$, we shall construct a $p$-adically analytic $L$-function of three variables which interpolate the values ${{\cal D}_ N(\ell +m,f,g)\over \pi ^{\ell +2m+1}< f,f>}$ for integers $m$ with $0\le m< k-1,$ by regarding all the ingredients $m$, $f$ and $g$ as variables. Here $\langle f,f\rangle $ is the Petersson self-inner product of $f$.
LA - eng
KW - Hecke operators; congruence subgroup; Rankin product; p-adically analytic; p-adic interpolation; special values
UR - http://eudml.org/doc/74808
ER -
References
top- [1] N. BOURBAKI, Algèbre, Paris, Hermann, 1970.
- [2] N. BOURBAKI, Algèbre commutative, Paris, Hermann, 1961.
- [3] H. CARAYOL, Représentations cuspidales du groupe linéaire, Ann. Scient. Ec. Norm. Sup., 4e-serie, 17 (1984), 191-225. Zbl0549.22009MR86f:22019
- [4] W. CASSELMAN, On some results of Atkin and Lehner, Math. Ann., 201 (1973), 301-314. Zbl0239.10015MR49 #2558
- [5] P. DELIGNE, Les constantes des équations fonctionnelles des fonctions L, In "Modular functions of one variables II," Lectures notes in Math., 349 (1973), 501-595. Zbl0271.14011MR50 #2128
- [6] P. DELIGNE, Valeurs de fonctions L et périodes d'intégrales, Proc. Symp. Pure Math., 33 (1979), part 2, 313-346. Zbl0449.10022MR81d:12009
- [7] S. S. GELBART, Automorphic forms on adele groups, Ann. of Math. Studies No. 83, Princeton, Princeton Univ. Press, 1975. Zbl0329.10018MR52 #280
- [8] S. S. GELBART and H. JACQUET, A relation between automorphic representations of GL(2) and GL(3), Ann. Scient. Ec. Norm. Sup., 4e-serie, 11 (1978), 471-542. Zbl0406.10022MR81e:10025
- [9] E. HECKE, Theorie der Eisensteinschen Reiben höherer Stufe und ihre Anwendung auf Funktionentheorie und Arithmetik, Abh. Math. Hamb., 5 (1927), 199-224 (Werke No. 24). Zbl53.0345.02JFM53.0345.02
- [10] H. HIDA, Congruences of cusp forms and special values of their zeta functions, Inventiones Math., 63 (1981), 225-261. Zbl0459.10018MR82g:10044
- [11] H. HIDA, A p-adic measure attached to the zeta functions associated with two elliptic modular forms, I, Inventiones Math., 79 (1985), 159-195. Zbl0573.10020MR86m:11097
- [12] H. HIDA, Congruences of cusp forms and Hecke algebras, Séminaire de Théorie des Nombres, Paris, 1983-1984, Progress in Math., 59, 133-146. Zbl0575.10025MR89a:11052
- [13] H. HIDA, Iwasawa modules attached to congruences of cusp forms, Ann. Scient. Ec. Norm. Sup., 4e-série, 19 (1986), 231-273. Zbl0607.10022MR88i:11023
- [14] H. HIDA, Galois representations into GL2(Zp[[X]]) attached to ordinary cusp forms, Inventiones Math., 85 (1986), 545-613. Zbl0612.10021MR87k:11049
- [15] H. HIDA, Hecke algebras for GL1 and GL2, Séminaire de Théorie des Nombres, Paris 1984-1985, Progress in Math., 63 (1986), 131-163. Zbl0648.10020MR88i:11078
- [16] H. HIDA, Modules of congruence of Hecke algebras and L-functions associated with cusp forms, Amer. J. Math., 110 (1988), 323-382. Zbl0645.10029MR89i:11058
- [17] H. JACQUET and R.P. LANGLANDS, Automorphic forms on GL(2), Lecture notes in Math., 114, Berlin-Heidelberg-New York, Springer, 1970. Zbl0236.12010MR53 #5481
- [18] H. JACQUET, Automorphic forms on GL(2), II, Lecture notes in Math., 278, Berlin-Heidelberg-New York, Springer, 1972. Zbl0243.12005MR58 #27778
- [19] N. M. KATZ, Higher congruences between modular forms, Ann. of Math., 101 (1975), 332-367. Zbl0356.10020MR54 #5120
- [20] N. M. KATZ, p-adic interpolation of real analytic Eisenstein series, Ann. of Math., 104 (1976), 459-571. Zbl0354.14007MR58 #22071
- [21] S. LANG, Cyclotomic fields, Grad. Texts in Math., 59, Berlin-Hiedelberg-New York, Springer, 1978. Zbl0395.12005MR58 #5578
- [22] B. MAZUR, Modular curves and the Eisenstein ideal, Publ. Math. I.H.E.S., 47 (1977), 33-186. Zbl0394.14008MR80c:14015
- [23] B. MAZUR and A. WILES, On p-adic analytic families of Galois representations, Compositio Math., 59 (1986), 231-264. Zbl0654.12008MR88e:11048
- [24] A. A. PANCISKIN, Le prolongement p-adic analytique des fonctions de L de Rankin, I, C.R. Acad. Sc. Paris, 295 (1982), 51-53, II :idem 227-230. Zbl0501.10028MR83m:10039
- [25] B. PERRIN-RIOU, Fonctions L p-adiques associées à une forme modulaire et à un corps quadratique imaginaire, J. London Math. Soc. Zbl0656.10019
- [26] J.-P. SERRE, Formes modulaires et fonctions zêta p-adiques, In "Modular functions of one variable III", Lecture notes in Math. 350 (1973), pp. 191-268. Zbl0277.12014MR53 #7949a
- [27] G. SHIMURA, Introduction to the arithmetic theory of automorphic functions, Tokyo-Princeton, Iwanami Shoten and Princeton Univ. Press, 1971. Zbl0221.10029
- [28] G. SHIMURA, On the holomorphy of certain Dirichlet series, Proc. London Math. Soc., (3) 31 (1975), 79-98. Zbl0311.10029MR52 #3064
- [29] G. SHIMURA, On some arithmetic properties of modular forms of one and several variables, Ann. of Math., 102 (1975), 491-515. Zbl0327.10028MR58 #10758
- [30] G. SHIMURA, The special values of the zeta functions associated with cusp forms, Comm. Pure Appl. Math., 29 (1976), 783-804. Zbl0348.10015MR55 #7925
- [31] G. SHIMURA, On the periods of modular forms, Math. Ann., 229 (1977), 211-221. Zbl0363.10019MR57 #3080
- [32] G. SHIMURA, Confluent hypergeometric functions on Tube domains, Math. Ann., 260 (1982), 269-302. Zbl0502.10013MR84f:32040
- [33] J. TILOUINE, Un sous-groupe p-divisible de la jacobienne de X1(Npr) comme module sur l'algèbre de Hecke, Bull. Soc. Math. France, 115 (1987), 329-360. Zbl0677.14006MR88m:11043
- [33] A. WEIL, Basic number theory, Berlin-Heiderberg-New York, Springer, 1974. Zbl0326.12001MR55 #302
Citations in EuDML Documents
topNotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.