Un sous-groupe p -divisible de la jacobienne de X 1 ( N p r ) comme module sur l’algèbre de Hecke

Jacques Tilouine

Bulletin de la Société Mathématique de France (1987)

  • Volume: 115, page 329-360
  • ISSN: 0037-9484

How to cite

top

Tilouine, Jacques. "Un sous-groupe $p$-divisible de la jacobienne de $X_1(N p_r)$ comme module sur l’algèbre de Hecke." Bulletin de la Société Mathématique de France 115 (1987): 329-360. <http://eudml.org/doc/87536>.

@article{Tilouine1987,
author = {Tilouine, Jacques},
journal = {Bulletin de la Société Mathématique de France},
keywords = {p-divisible part of the Jacobian; modular curve; Hecke algebra; Iwasawa algebra},
language = {fre},
pages = {329-360},
publisher = {Société mathématique de France},
title = {Un sous-groupe $p$-divisible de la jacobienne de $X_1(N p_r)$ comme module sur l’algèbre de Hecke},
url = {http://eudml.org/doc/87536},
volume = {115},
year = {1987},
}

TY - JOUR
AU - Tilouine, Jacques
TI - Un sous-groupe $p$-divisible de la jacobienne de $X_1(N p_r)$ comme module sur l’algèbre de Hecke
JO - Bulletin de la Société Mathématique de France
PY - 1987
PB - Société mathématique de France
VL - 115
SP - 329
EP - 360
LA - fre
KW - p-divisible part of the Jacobian; modular curve; Hecke algebra; Iwasawa algebra
UR - http://eudml.org/doc/87536
ER -

References

top
  1. [1] ASAI (T.). — On the Fourier coefficients of automorphic forms at various cusps and some applications to Rankin's convolution. J. Math. Soc. Japan, t. 28, 1976, p. 48-61. Zbl0313.10026MR55 #270
  2. [2] ATKIN (A. O. L.) and LEHNER (J.). — Hecke operators on Гo(m). Math. Ann., t. 185, 1970, p. 134-160. Zbl0177.34901MR42 #3022
  3. [3] CURTIS (C.) and REINER (I.). — Representation Theory of finite groups and associative algebras, Interscience Publishers John Wiley & Sons, 1966. 
  4. [4] HIDA (H.). — On congruence divisors of cusp forms as factors of the special values of their zeta functions, Inv. Math., t. 64, 1981, p. 221-262. Zbl0472.10028MR83h:10066
  5. [5] HIDA (H.). — Kummer's criterion for the special values of Hecke L-functions of imaginary quadratic fields and congruences among cusp forms, Inv. Math., t. 66, 1982, p. 415-459. Zbl0485.10019MR83j:12002
  6. [6] HIDA (H.). — Iwasawa modules attached to congruences among cusp forms, Ann. Scient. de l'E.N.S. (à paraître). Zbl0607.10022
  7. [7] HIDA (H.). — Gclois Representations into GL2(Zp[[X]]) attached to ordinary cusp forms, Inv. Math. (à paraître). 
  8. [8] IGUSA (J.). — Kroneckerian model of fields of elliptic modular functions, Amer. J. Math., t. 81, 1968, p. 561-577. Zbl0093.04502MR21 #7214
  9. [9] LANGLANDS (R.-P.). — Modular forms and l-adic representations (International Summer School on Modular Functions, Antwerp, 1972). Modular Functions in one one variable II, Lmcture Notes in Mathematics, vol. 349, p. 361-500, Berlin-Heidelberg-New York : Springer, 1973. Zbl0279.14007
  10. [10] LI (W.). — Newforms and functional equations, Math. Ann., t. 212, 1975, p. 285-315. Zbl0278.10026MR51 #5498
  11. [11] MATSUMURA (H.). — Commutative Algebra, W. A. Benjamin, Inc. 1970. Zbl0211.06501MR42 #1813
  12. [12] MAZUR (B.). — Modular Curves and the Eisenstein Ideal. Publ. Math. I.H.E.S. 47, 1978. Zbl0394.14008
  13. [13] MAZUR (B.) and KATZ (N.). — Arithmetic moduli of elliptic curves, Annals of Math. Studies, Nwmber 108. Princeton University Press., 1985. Zbl0576.14026MR86i:11024
  14. [14] MAZUR (B) and WILES (A.). — Class fields of abelian extensions of Q, Inv. Math., t. 76, 1984, p. 179-330. Zbl0545.12005MR85m:11069
  15. [15] MAZUR (B.) and WILES (A.). — On p-adic analytic families of Galois Representations (To appear). 
  16. [16] MUMFORD (D.). — Geometric invariant theory, Ergebnisse der Mathematik und Ihrer Grenzgebiete, 36, Springer-Verlag, 1965. Zbl0147.39304MR35 #5451
  17. [17] OGG (A.). — On the eigenvalues of Hecke operators, Meth. Ann., t. 79, 1969, p. 101-108. Zbl0169.10102MR42 #4492
  18. [18] RAYNAUD (M.). — Specialisation du Foncteur de Picard, Publ. Math. I.H.E.S., 38, 1970, p. 27-76. Zbl0207.51602MR44 #227
  19. [19] SHIMURA (G.). — Introduction to the arithmetic theory of automorphic functions, Iwanami Shoten Publishers and Princeton University Press., 1971. Zbl0221.10029
  20. [20] SHIMURA (G.). — Class fields over real quadratic fields and Hecke operators. Ann. of Math., t. 295, 1970, p. 130-190. Zbl0255.10032MR47 #3351
  21. [21] TATE (J.). — p-divisible Groups, Proceedings of a Conference on Local Fields, Driebergen, 1966, Springer-Verlag, 1967. Zbl0157.27601
  22. [22] WILES (A.). — Modular Curves and the Class Group of Q (ξp), Inv. Math., 58, 1980, p. 1-35. Zbl0436.12004MR82j:12009

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.