Congruence modules related to Eisenstein series
Annales scientifiques de l'École Normale Supérieure (2003)
- Volume: 36, Issue: 2, page 225-269
- ISSN: 0012-9593
Access Full Article
topHow to cite
topOhta, Masami. "Congruence modules related to Eisenstein series." Annales scientifiques de l'École Normale Supérieure 36.2 (2003): 225-269. <http://eudml.org/doc/82601>.
@article{Ohta2003,
author = {Ohta, Masami},
journal = {Annales scientifiques de l'École Normale Supérieure},
keywords = {congruence module; -adic Hecke algebra; -adic Hecke algebra; -adic modular symbol; Iwasawa algebra; Eisenstein ideal; Eistenstein series},
language = {eng},
number = {2},
pages = {225-269},
publisher = {Elsevier},
title = {Congruence modules related to Eisenstein series},
url = {http://eudml.org/doc/82601},
volume = {36},
year = {2003},
}
TY - JOUR
AU - Ohta, Masami
TI - Congruence modules related to Eisenstein series
JO - Annales scientifiques de l'École Normale Supérieure
PY - 2003
PB - Elsevier
VL - 36
IS - 2
SP - 225
EP - 269
LA - eng
KW - congruence module; -adic Hecke algebra; -adic Hecke algebra; -adic modular symbol; Iwasawa algebra; Eisenstein ideal; Eistenstein series
UR - http://eudml.org/doc/82601
ER -
References
top- [1] Greenberg R., Stevens G., p-adic L-functions and p-adic periods of modular forms, Invent. Math.111 (1993) 407-447. Zbl0778.11034MR1198816
- [2] Harder G., Pink R., Modular konstruierte unverzweigte abelsche p-Erweiterungen von Q(ζp) und die Struktur ihrer Galoisgruppen, Math. Nachr.159 (1992) 83-99. Zbl0773.11069
- [3] Hecke E., Theorie der Eisensteinschen Reihen höherer Stufe und ihre Anwendung auf Funktionentheorie und Arithmetik, Abh. Math. Sem. Hamburg5 (1927) 199-224, (Math. Werke No. 24). Zbl53.0345.02JFM53.0345.02
- [4] Hida H., Iwasawa modules attached to congruences of cusp forms, Ann. Sci. Éc. Norm. Sup. (4)19 (1986) 231-273. Zbl0607.10022MR868300
- [5] Hida H., Hecke algebras for GL1 and GL2, in: Sém. Théorie des Nombres, Paris, 1984–85, Progress in Math., 63, Birkhäuser, 1986, pp. 131-163. Zbl0648.10020MR897346
- [6] Hida H., Galois representations into GL2(Zp〚X〛) attached to ordinary cusp forms, Invent. Math.85 (1986) 543-613. Zbl0612.10021
- [7] Hida H., A p-adic measure attached to the zeta functions associated with two elliptic modular forms II, Ann. Inst. Fourier38 (1988) 1-83. Zbl0645.10028MR976685
- [8] Hida H., Elementary Theory of L-functions and Eisenstein Series, London Math. Soc. Stud. Texts, 26, Cambridge Univ. Press, 1993. Zbl0942.11024MR1216135
- [9] Kurihara M., Ideal class groups of cyclotomic fields and modular forms of level 1, J. Number Theory45 (1993) 281-294. Zbl0797.11087MR1247385
- [10] Kubert D., Lang S., Modular units, Springer-Verlag, 1981. Zbl0492.12002MR648603
- [11] Mazur B., Wiles A., Class fields of abelian extensions of Q, Invent. Math.76 (1984) 179-330. Zbl0545.12005MR742853
- [12] Mazur B., Wiles A., On p-adic analytic families of Galois representations, Comp. Math.59 (1986) 231-264. Zbl0654.12008MR860140
- [13] Ohta M., On cohomology groups attached to towers of algebraic curves, J. Math. Soc. Japan45 (1993) 131-183. Zbl0820.14014MR1195688
- [14] Ohta M., On the p-adic Eichler–Shimura isomorphism for Λ-adic cusp forms, J. Reine Angew. Math.463 (1995) 49-98. Zbl0827.11025
- [15] Ohta M., Ordinary p-adic étale cohomology groups attached to towers of elliptic modular curves, Comp. Math.115 (1999) 241-301. Zbl0967.11015MR1674001
- [16] Ohta M., Ordinary p-adic étale cohomology groups attached to towers of elliptic modular curves. II, Math. Ann.318 (2000) 557-583. Zbl0967.11016MR1800769
- [17] Saby N., Théorie d'Iwasawa géométrique: un théorème de comparaison, J. Number Theory59 (1996) 225-247. Zbl0870.11069MR1402607
- [18] Shimura G., Introduction to the Arithmetic Theory of Automorphic Functions, Iwanami Shoten and Princeton Univ. Press, 1971. Zbl0221.10029MR314766
- [19] Stevens G., Arithmetic on Modular Curves, Progress in Math., 20, Birkhäuser, 1982. Zbl0529.10028MR670070
- [20] Tilouine J., Un sous-groupe p-divisible de la jacobienne de X1(Npr) comme module sur l'algèbre de Hecke, Bull. Soc. Math. Fr.115 (1987) 329-360. Zbl0677.14006MR926532
- [21] Wiles A., On ordinary λ-adic representations associated to modular forms, Invent. Math.94 (1988) 529-573. Zbl0664.10013
- [22] Wiles A., The Iwasawa conjecture for totally real fields, Ann. Math.131 (1990) 493-540. Zbl0719.11071MR1053488
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.