Congruence modules related to Eisenstein series

Masami Ohta

Annales scientifiques de l'École Normale Supérieure (2003)

  • Volume: 36, Issue: 2, page 225-269
  • ISSN: 0012-9593

How to cite

top

Ohta, Masami. "Congruence modules related to Eisenstein series." Annales scientifiques de l'École Normale Supérieure 36.2 (2003): 225-269. <http://eudml.org/doc/82601>.

@article{Ohta2003,
author = {Ohta, Masami},
journal = {Annales scientifiques de l'École Normale Supérieure},
keywords = {congruence module; -adic Hecke algebra; -adic Hecke algebra; -adic modular symbol; Iwasawa algebra; Eisenstein ideal; Eistenstein series},
language = {eng},
number = {2},
pages = {225-269},
publisher = {Elsevier},
title = {Congruence modules related to Eisenstein series},
url = {http://eudml.org/doc/82601},
volume = {36},
year = {2003},
}

TY - JOUR
AU - Ohta, Masami
TI - Congruence modules related to Eisenstein series
JO - Annales scientifiques de l'École Normale Supérieure
PY - 2003
PB - Elsevier
VL - 36
IS - 2
SP - 225
EP - 269
LA - eng
KW - congruence module; -adic Hecke algebra; -adic Hecke algebra; -adic modular symbol; Iwasawa algebra; Eisenstein ideal; Eistenstein series
UR - http://eudml.org/doc/82601
ER -

References

top
  1. [1] Greenberg R., Stevens G., p-adic L-functions and p-adic periods of modular forms, Invent. Math.111 (1993) 407-447. Zbl0778.11034MR1198816
  2. [2] Harder G., Pink R., Modular konstruierte unverzweigte abelsche p-Erweiterungen von Q(ζp) und die Struktur ihrer Galoisgruppen, Math. Nachr.159 (1992) 83-99. Zbl0773.11069
  3. [3] Hecke E., Theorie der Eisensteinschen Reihen höherer Stufe und ihre Anwendung auf Funktionentheorie und Arithmetik, Abh. Math. Sem. Hamburg5 (1927) 199-224, (Math. Werke No. 24). Zbl53.0345.02JFM53.0345.02
  4. [4] Hida H., Iwasawa modules attached to congruences of cusp forms, Ann. Sci. Éc. Norm. Sup. (4)19 (1986) 231-273. Zbl0607.10022MR868300
  5. [5] Hida H., Hecke algebras for GL1 and GL2, in: Sém. Théorie des Nombres, Paris, 1984–85, Progress in Math., 63, Birkhäuser, 1986, pp. 131-163. Zbl0648.10020MR897346
  6. [6] Hida H., Galois representations into GL2(Zp〚X〛) attached to ordinary cusp forms, Invent. Math.85 (1986) 543-613. Zbl0612.10021
  7. [7] Hida H., A p-adic measure attached to the zeta functions associated with two elliptic modular forms II, Ann. Inst. Fourier38 (1988) 1-83. Zbl0645.10028MR976685
  8. [8] Hida H., Elementary Theory of L-functions and Eisenstein Series, London Math. Soc. Stud. Texts, 26, Cambridge Univ. Press, 1993. Zbl0942.11024MR1216135
  9. [9] Kurihara M., Ideal class groups of cyclotomic fields and modular forms of level 1, J. Number Theory45 (1993) 281-294. Zbl0797.11087MR1247385
  10. [10] Kubert D., Lang S., Modular units, Springer-Verlag, 1981. Zbl0492.12002MR648603
  11. [11] Mazur B., Wiles A., Class fields of abelian extensions of Q, Invent. Math.76 (1984) 179-330. Zbl0545.12005MR742853
  12. [12] Mazur B., Wiles A., On p-adic analytic families of Galois representations, Comp. Math.59 (1986) 231-264. Zbl0654.12008MR860140
  13. [13] Ohta M., On cohomology groups attached to towers of algebraic curves, J. Math. Soc. Japan45 (1993) 131-183. Zbl0820.14014MR1195688
  14. [14] Ohta M., On the p-adic Eichler–Shimura isomorphism for Λ-adic cusp forms, J. Reine Angew. Math.463 (1995) 49-98. Zbl0827.11025
  15. [15] Ohta M., Ordinary p-adic étale cohomology groups attached to towers of elliptic modular curves, Comp. Math.115 (1999) 241-301. Zbl0967.11015MR1674001
  16. [16] Ohta M., Ordinary p-adic étale cohomology groups attached to towers of elliptic modular curves. II, Math. Ann.318 (2000) 557-583. Zbl0967.11016MR1800769
  17. [17] Saby N., Théorie d'Iwasawa géométrique: un théorème de comparaison, J. Number Theory59 (1996) 225-247. Zbl0870.11069MR1402607
  18. [18] Shimura G., Introduction to the Arithmetic Theory of Automorphic Functions, Iwanami Shoten and Princeton Univ. Press, 1971. Zbl0221.10029MR314766
  19. [19] Stevens G., Arithmetic on Modular Curves, Progress in Math., 20, Birkhäuser, 1982. Zbl0529.10028MR670070
  20. [20] Tilouine J., Un sous-groupe p-divisible de la jacobienne de X1(Npr) comme module sur l'algèbre de Hecke, Bull. Soc. Math. Fr.115 (1987) 329-360. Zbl0677.14006MR926532
  21. [21] Wiles A., On ordinary λ-adic representations associated to modular forms, Invent. Math.94 (1988) 529-573. Zbl0664.10013
  22. [22] Wiles A., The Iwasawa conjecture for totally real fields, Ann. Math.131 (1990) 493-540. Zbl0719.11071MR1053488

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.