An estimate of the gap of the first two eigenvalues in the Schrödinger operator

I. M. Singer; Bun Wong; Shing-Tung Yau; Stephen S.-T. Yau

Annali della Scuola Normale Superiore di Pisa - Classe di Scienze (1985)

  • Volume: 12, Issue: 2, page 319-333
  • ISSN: 0391-173X

How to cite

top

Singer, I. M., et al. "An estimate of the gap of the first two eigenvalues in the Schrödinger operator." Annali della Scuola Normale Superiore di Pisa - Classe di Scienze 12.2 (1985): 319-333. <http://eudml.org/doc/83959>.

@article{Singer1985,
author = {Singer, I. M., Wong, Bun, Yau, Shing-Tung, Yau, Stephen S.-T.},
journal = {Annali della Scuola Normale Superiore di Pisa - Classe di Scienze},
keywords = {bounded convex domain; smooth boundary; nonnegative convex potential; first and second eigenvalue; Schrödinger operator; Dirichlet boundary condition; lower bound; upper bound; Malgrange preparation theorem},
language = {eng},
number = {2},
pages = {319-333},
publisher = {Scuola normale superiore},
title = {An estimate of the gap of the first two eigenvalues in the Schrödinger operator},
url = {http://eudml.org/doc/83959},
volume = {12},
year = {1985},
}

TY - JOUR
AU - Singer, I. M.
AU - Wong, Bun
AU - Yau, Shing-Tung
AU - Yau, Stephen S.-T.
TI - An estimate of the gap of the first two eigenvalues in the Schrödinger operator
JO - Annali della Scuola Normale Superiore di Pisa - Classe di Scienze
PY - 1985
PB - Scuola normale superiore
VL - 12
IS - 2
SP - 319
EP - 333
LA - eng
KW - bounded convex domain; smooth boundary; nonnegative convex potential; first and second eigenvalue; Schrödinger operator; Dirichlet boundary condition; lower bound; upper bound; Malgrange preparation theorem
UR - http://eudml.org/doc/83959
ER -

References

top
  1. [1] Brascamp - Lieb, On extensions of the Brunn-Minkowski and prékopa-Leindler theorems, including inequalities for Log concave functions, and with an application to Diffusion equation, Journal of Functional Analysis, 22 (1976), pp. 366-389. Zbl0334.26009
  2. [2] S.Y. Cheng, Eigenvalue comparison theorems and its geometric applications, Math. Z., 143 (1975), pp. 289-297. Zbl0329.53035
  3. [3] Courant- Hilbert, Method of Mathematical Physics, Vol. I. Zbl0051.28802
  4. [4] P. Li - S.T. Yau, Estimate of eigenvalues of a compact Riemannian manifold, Proc. Symp. Pure Math., 36 (1980), pp. 205-240. Zbl0441.58014
  5. [5] B. Malgrange, Ideals of differentiable functions, Oxford University Press, 1966. Zbl0177.17902
  6. [6] Payne- Polya- Weinberger, On the ratio of consecutive eigenvalues, Journal of Math. and Physics, 35, No. 3 (Oct. 1956), pp. 289-298. Zbl0073.08203MR84696
  7. [7] B. Simon, The P(ϕ)2 Euclidean quantum field theory, Princeton Series in Physics. Zbl1175.81146

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.