Potential wells in high dimensions I

Johannes Sjöstrand

Annales de l'I.H.P. Physique théorique (1993)

  • Volume: 58, Issue: 1, page 1-41
  • ISSN: 0246-0211

How to cite

top

Sjöstrand, Johannes. "Potential wells in high dimensions I." Annales de l'I.H.P. Physique théorique 58.1 (1993): 1-41. <http://eudml.org/doc/76596>.

@article{Sjöstrand1993,
author = {Sjöstrand, Johannes},
journal = {Annales de l'I.H.P. Physique théorique},
keywords = {semi-classical Schrödinger operator; low part of the spectrum; asymptotic expansion},
language = {eng},
number = {1},
pages = {1-41},
publisher = {Gauthier-Villars},
title = {Potential wells in high dimensions I},
url = {http://eudml.org/doc/76596},
volume = {58},
year = {1993},
}

TY - JOUR
AU - Sjöstrand, Johannes
TI - Potential wells in high dimensions I
JO - Annales de l'I.H.P. Physique théorique
PY - 1993
PB - Gauthier-Villars
VL - 58
IS - 1
SP - 1
EP - 41
LA - eng
KW - semi-classical Schrödinger operator; low part of the spectrum; asymptotic expansion
UR - http://eudml.org/doc/76596
ER -

References

top
  1. [A1] C. Albanese, Localized Solutions of Hartree Equations for Narrow Band Crystals, Comm. Math. Phys., Vol. 120, 1988, pp. 97-103. Zbl0671.35071MR972544
  2. [A2] C. Albanese, A Continuation Method for Non-Linear Eigenvalue Problems, J. Funct. Anal., Vol. 84, 1989, pp. 181-187. Zbl0671.47055MR999495
  3. [D] F. Daumer, Equation de Schrödinger dans l'approximation du tight-binding, Thesis, Université de Nantes, 2 février 1990. 
  4. [HS1] B. Helffer and J. Sjöstrand, Multiple Wells in the Semiclassical Limit I, Comm. P.D.E., Vol. 9, (4), 1984, pp. 337-408. Zbl0546.35053MR740094
  5. [HS2] B. Helffer and J. Sjöstrand, Puits multiples en limite semiclassique II, interaction moléculaire, symétries, perturbation, Ann. I.H.P., Vol. 42, (2), 1985. pp. 127-212. Zbl0595.35031MR798695
  6. [HS3] B. Helffer and J. Sjöstrand, Multiple Wells in the Semiclassical Limit III. Interaction through Non-Resonant Wells, Math. Nachr., Vol. 124, 1985, pp. 263-313. Zbl0597.35023MR827902
  7. [MS] A. Menikoff and J. Sjöstrand, On the Eigenvalues of a Class of Hypoelliptic Operators, Math. Ann., Vol. 235, 1978, pp. 55-85. Zbl0375.35014MR481627
  8. [K] C. Kittel, Quantum Theory of Solids, John Wiley, 3rd ed., 1968. Zbl0121.44701
  9. [HeT] E.M. Henley and W. Thirring, Elementary Quantum Field Theory, McGraw Hill, 1962. Zbl0111.43101MR138396

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.