On the existence of geodesics in static Lorentz manifolds with singular boundary

V. Benci; D. Fortunato; F. Giannoni

Annali della Scuola Normale Superiore di Pisa - Classe di Scienze (1992)

  • Volume: 19, Issue: 2, page 255-289
  • ISSN: 0391-173X

How to cite

top

Benci, V., Fortunato, D., and Giannoni, F.. "On the existence of geodesics in static Lorentz manifolds with singular boundary." Annali della Scuola Normale Superiore di Pisa - Classe di Scienze 19.2 (1992): 255-289. <http://eudml.org/doc/84125>.

@article{Benci1992,
author = {Benci, V., Fortunato, D., Giannoni, F.},
journal = {Annali della Scuola Normale Superiore di Pisa - Classe di Scienze},
keywords = {multiplicity results; static Lorentz manifolds; Killing vector field; completeness; geodetically connected; variational methods},
language = {eng},
number = {2},
pages = {255-289},
publisher = {Scuola normale superiore},
title = {On the existence of geodesics in static Lorentz manifolds with singular boundary},
url = {http://eudml.org/doc/84125},
volume = {19},
year = {1992},
}

TY - JOUR
AU - Benci, V.
AU - Fortunato, D.
AU - Giannoni, F.
TI - On the existence of geodesics in static Lorentz manifolds with singular boundary
JO - Annali della Scuola Normale Superiore di Pisa - Classe di Scienze
PY - 1992
PB - Scuola normale superiore
VL - 19
IS - 2
SP - 255
EP - 289
LA - eng
KW - multiplicity results; static Lorentz manifolds; Killing vector field; completeness; geodetically connected; variational methods
UR - http://eudml.org/doc/84125
ER -

References

top
  1. [1] A. Avez, Essais de géométrie Riemanniene hyperbolique: Applications to the relativité générale, Ann. Inst. Fourier132, (1963), 105-190. Zbl0188.54801MR167940
  2. [2] V. Benci, Normal modes of a Lagrangian system constrained in a potential well, Ann. Inst. H. Poincaré Anal. Non Linéaire, 1, (1984), 379-400. Zbl0561.58006MR779875
  3. [3] V. Benci - D. Fortunato, Existence of geodesics for the Lorentz metric of a stationary gravitational field, Ann. Inst. H. Poincaré Anal. Non Linéaire, 7, (1990), 27-35. Zbl0697.58011MR1046082
  4. [4] V. Benci - D. Fortunato, On the existence of infinitely many geodesics on space-time manifolds, to appear in Adv. Math. Zbl0808.58016MR1275190
  5. [5] V. Benci - D. Fortunato - F. Giannoni, On the existence of multiple geodesics in static space-times, Ann. Inst. H. Poincaré Anal. Non Linéaire, 8, (1991), 79-102. Zbl0716.53057MR1094653
  6. [6] V. Benci - D. Fortunato - F. Giannoni, Some results on the existence of geodesics in Lorentz manifolds with nonsmooth boundary, Atti Accad. Naz. Lincei Rend. Cl. Sci. Fis. Mat. Natur., 2, (1991), 17-23. Zbl0737.53059MR1120118
  7. [7] E. Fadell - A. Husseini, Category of loop spaces of open subsets in Euclidean space, preprint. Zbl0756.55008
  8. [8] E. Fadell - A. Husseini, Infinite cup length in free loop spaces with application to a problem of the N-body type, preprint. Zbl0764.58006
  9. [9] S.W. Hawking - G.F. Ellis, The large scale structure of space-time, Cambridge Univ. Press, London /New-York, 1973. Zbl0265.53054MR424186
  10. [10] W. Klingenberg, Lectures on closed geodesics, Springer-Verlag, Berlin/Heidelberg /New-York, 1978. Zbl0397.58018MR478069
  11. [11] M.D. Kruskal, Maximal extension of Schwarzschild metric, Phys. Rev., 119, (1960), 1743-1745. Zbl0098.19001MR115757
  12. [12] L. Landau - E. Lifchitz, Theorie des champs, Mir, Moscou, 1970. Zbl0144.47605MR1020299
  13. [13] J. Nash, The embedding problem for Riemannian manifolds, Ann. of Math.63, (1956), 20-63. Zbl0070.38603MR75639
  14. [14] B. O'Neill, Semi-Riemannian geometry with applications to relativity, Academic Press Inc., New York/ London, 1983. Zbl0531.53051
  15. [15] R.S. Palais, Critical point theory and the minimax principle, Global Anal., Proc. Sym. "Pure Math."15, Amer. Math. Soc. (1970), 185-202. Zbl0212.28902MR264712
  16. [16] R. Penrose, Techniques of differential topology in relativity, Conf. Board Math. Sci. 7, S.I.A.M.Philadelphia, 1972. Zbl0321.53001MR469146
  17. [17] J.T. Schwartz, Nonlinear functional analysis, Gordon and Breach, New York, 1969. Zbl0203.14501MR433481
  18. [18] H.J. Seifert, Global connectivity by time-like geodesics, Z. Naturforsch.22a, (1967), 1356-60. Zbl0163.43701MR225556
  19. [19] K. Uhlenbeck, A Morse theory for geodesics on a Lorentz manifold, Topology14, (1975), 69-90. Zbl0323.58010MR383461

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.