On the existence of geodesics in static Lorentz manifolds with singular boundary
V. Benci; D. Fortunato; F. Giannoni
Annali della Scuola Normale Superiore di Pisa - Classe di Scienze (1992)
- Volume: 19, Issue: 2, page 255-289
- ISSN: 0391-173X
Access Full Article
topHow to cite
topBenci, V., Fortunato, D., and Giannoni, F.. "On the existence of geodesics in static Lorentz manifolds with singular boundary." Annali della Scuola Normale Superiore di Pisa - Classe di Scienze 19.2 (1992): 255-289. <http://eudml.org/doc/84125>.
@article{Benci1992,
author = {Benci, V., Fortunato, D., Giannoni, F.},
journal = {Annali della Scuola Normale Superiore di Pisa - Classe di Scienze},
keywords = {multiplicity results; static Lorentz manifolds; Killing vector field; completeness; geodetically connected; variational methods},
language = {eng},
number = {2},
pages = {255-289},
publisher = {Scuola normale superiore},
title = {On the existence of geodesics in static Lorentz manifolds with singular boundary},
url = {http://eudml.org/doc/84125},
volume = {19},
year = {1992},
}
TY - JOUR
AU - Benci, V.
AU - Fortunato, D.
AU - Giannoni, F.
TI - On the existence of geodesics in static Lorentz manifolds with singular boundary
JO - Annali della Scuola Normale Superiore di Pisa - Classe di Scienze
PY - 1992
PB - Scuola normale superiore
VL - 19
IS - 2
SP - 255
EP - 289
LA - eng
KW - multiplicity results; static Lorentz manifolds; Killing vector field; completeness; geodetically connected; variational methods
UR - http://eudml.org/doc/84125
ER -
References
top- [1] A. Avez, Essais de géométrie Riemanniene hyperbolique: Applications to the relativité générale, Ann. Inst. Fourier132, (1963), 105-190. Zbl0188.54801MR167940
- [2] V. Benci, Normal modes of a Lagrangian system constrained in a potential well, Ann. Inst. H. Poincaré Anal. Non Linéaire, 1, (1984), 379-400. Zbl0561.58006MR779875
- [3] V. Benci - D. Fortunato, Existence of geodesics for the Lorentz metric of a stationary gravitational field, Ann. Inst. H. Poincaré Anal. Non Linéaire, 7, (1990), 27-35. Zbl0697.58011MR1046082
- [4] V. Benci - D. Fortunato, On the existence of infinitely many geodesics on space-time manifolds, to appear in Adv. Math. Zbl0808.58016MR1275190
- [5] V. Benci - D. Fortunato - F. Giannoni, On the existence of multiple geodesics in static space-times, Ann. Inst. H. Poincaré Anal. Non Linéaire, 8, (1991), 79-102. Zbl0716.53057MR1094653
- [6] V. Benci - D. Fortunato - F. Giannoni, Some results on the existence of geodesics in Lorentz manifolds with nonsmooth boundary, Atti Accad. Naz. Lincei Rend. Cl. Sci. Fis. Mat. Natur., 2, (1991), 17-23. Zbl0737.53059MR1120118
- [7] E. Fadell - A. Husseini, Category of loop spaces of open subsets in Euclidean space, preprint. Zbl0756.55008
- [8] E. Fadell - A. Husseini, Infinite cup length in free loop spaces with application to a problem of the N-body type, preprint. Zbl0764.58006
- [9] S.W. Hawking - G.F. Ellis, The large scale structure of space-time, Cambridge Univ. Press, London /New-York, 1973. Zbl0265.53054MR424186
- [10] W. Klingenberg, Lectures on closed geodesics, Springer-Verlag, Berlin/Heidelberg /New-York, 1978. Zbl0397.58018MR478069
- [11] M.D. Kruskal, Maximal extension of Schwarzschild metric, Phys. Rev., 119, (1960), 1743-1745. Zbl0098.19001MR115757
- [12] L. Landau - E. Lifchitz, Theorie des champs, Mir, Moscou, 1970. Zbl0144.47605MR1020299
- [13] J. Nash, The embedding problem for Riemannian manifolds, Ann. of Math.63, (1956), 20-63. Zbl0070.38603MR75639
- [14] B. O'Neill, Semi-Riemannian geometry with applications to relativity, Academic Press Inc., New York/ London, 1983. Zbl0531.53051
- [15] R.S. Palais, Critical point theory and the minimax principle, Global Anal., Proc. Sym. "Pure Math."15, Amer. Math. Soc. (1970), 185-202. Zbl0212.28902MR264712
- [16] R. Penrose, Techniques of differential topology in relativity, Conf. Board Math. Sci. 7, S.I.A.M.Philadelphia, 1972. Zbl0321.53001MR469146
- [17] J.T. Schwartz, Nonlinear functional analysis, Gordon and Breach, New York, 1969. Zbl0203.14501MR433481
- [18] H.J. Seifert, Global connectivity by time-like geodesics, Z. Naturforsch.22a, (1967), 1356-60. Zbl0163.43701MR225556
- [19] K. Uhlenbeck, A Morse theory for geodesics on a Lorentz manifold, Topology14, (1975), 69-90. Zbl0323.58010MR383461
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.