Minimization properties of Hill's orbits and applications to some N-body problems

Gianni Arioli; Filippo Gazzola; Susanna Terracini

Annales de l'I.H.P. Analyse non linéaire (2000)

  • Volume: 17, Issue: 5, page 617-650
  • ISSN: 0294-1449

How to cite

top

Arioli, Gianni, Gazzola, Filippo, and Terracini, Susanna. "Minimization properties of Hill's orbits and applications to some N-body problems." Annales de l'I.H.P. Analyse non linéaire 17.5 (2000): 617-650. <http://eudml.org/doc/78503>.

@article{Arioli2000,
author = {Arioli, Gianni, Gazzola, Filippo, Terracini, Susanna},
journal = {Annales de l'I.H.P. Analyse non linéaire},
keywords = {Hill's orbits; non-collision orbits; minima of action functional; periodic problem; planar -body systems},
language = {eng},
number = {5},
pages = {617-650},
publisher = {Gauthier-Villars},
title = {Minimization properties of Hill's orbits and applications to some N-body problems},
url = {http://eudml.org/doc/78503},
volume = {17},
year = {2000},
}

TY - JOUR
AU - Arioli, Gianni
AU - Gazzola, Filippo
AU - Terracini, Susanna
TI - Minimization properties of Hill's orbits and applications to some N-body problems
JO - Annales de l'I.H.P. Analyse non linéaire
PY - 2000
PB - Gauthier-Villars
VL - 17
IS - 5
SP - 617
EP - 650
LA - eng
KW - Hill's orbits; non-collision orbits; minima of action functional; periodic problem; planar -body systems
UR - http://eudml.org/doc/78503
ER -

References

top
  1. [1] Albouy A., Chenciner A., Le problème des n corps et les distances mutuelles, Invent. Math.131 (1998) 151-184. Zbl0919.70005MR1489897
  2. [2] Ambrosetti A., Critical points and nonlinear variational problems, Mémoire de la Société Mathématique de France49, 1992. Zbl0766.49006MR1164129
  3. [3] Ambrosetti A., Coti Zelati V., Periodic solutions of singular Lagrangian systems, Progress in Nonlinear Differential Equations and their Applications, Birkhäuser, 1993. Zbl0785.34032MR1267225
  4. [4] Bessi U., Coti Zelati V., Symmetries and noncollision closed orbits for planar N-body-type potentials, Nonlin. Anal. TMA16 (1991) 587-598. Zbl0715.70016MR1094320
  5. [5] Chenciner A., Desolneux N., Minima de l'intégrale d'action et équilibres relatifs de n corps, C. R. Acad. Sci. Paris Ser. I Math.326 (1998) 1209-1212 (Erratum: C. R. Acad. Sci. Paris Ser. I Math.327 (1998) 193). Zbl0922.70009MR1642007
  6. [6] Coti Zelati V., A class of periodic solutions of the N-body problem, Celestial Mech. Dynam. Astronom.46 (2) (1989) 177-186. Zbl0684.70006MR1044425
  7. [7] Coti Zelati V., Periodic solutions for N-body type problems, Ann. Inst. H. Poincaré Anal. Non Linéaire7 (5) (1990) 477-492. Zbl0723.70010MR1138534
  8. [8] Degiovanni M., Giannoni F., Dynamical systems with Newtonian type potentials, Ann. Sc. Norm. Sup. Pisa Cl. Sci.15 (1988) 467-494. Zbl0692.34050MR1015804
  9. [9] Degiovanni M., Giannoni F., Marino A., Dynamical systems with Newtonian type potentials, Atti Acc. Lincei Rend. Fis. Mat.8 (81) (1987) 271-278. Zbl0667.70010MR999819
  10. [10] Gordon W., Conservative dynamical systems involving strong forces, Trans. Amer. Math. Soc.204 (1975) 113-135. Zbl0276.58005MR377983
  11. [11] Gordon W., A minimizing property of Keplerian orbits, Amer. J. Math.99 (5) (1977) 961-971. Zbl0378.58006MR502484
  12. [12] Meyer K.R., Hall G.R., Introduction to Hamiltonian Dynamical Systems and the N-Body Problem, Springer, 1991. Zbl0743.70006MR1140006
  13. [ 13] Moser J., Stable and Random Motions in Dynamical Systems, Princeton Univ. Press, 1973. Zbl0271.70009MR442980
  14. [ 14] Moser J., Siegel C.M., Lectures on Celestial Mechanics, Springer, 1971. Zbl0312.70017MR502448
  15. [15] Sbano L., Collision solutions of the planar Newtonian three-body problem are not minima of the action functional, Nonlin. Diff. Eq. Appl. (1998). 
  16. [16] Serra E., Terracini S., Collisionless periodic solutions to some three-body problems, Arch. Rat. Mech. Anal.120 (4) (1992) 305-325. Zbl0773.70009MR1185563
  17. [17] Serra E., Terracini S., Noncollision solutions to some singular minimization problems with Keplerian-like potentials, Nonlin. Anal. TMA22 (1) (1994) 45-62. Zbl0813.70006MR1256169

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.