Locally analytic representations of
Annales scientifiques de l'École Normale Supérieure (2011)
- Volume: 44, Issue: 1, page 43-145
- ISSN: 0012-9593
Access Full Article
topAbstract
topHow to cite
topSchraen, Benjamin. "Représentations localement analytiques de $\mathrm {GL}_3(\mathbb {Q}_{p})$." Annales scientifiques de l'École Normale Supérieure 44.1 (2011): 43-145. <http://eudml.org/doc/272235>.
@article{Schraen2011,
abstract = {Nous construisons un complexe de représentations localement analytiques de $\mathrm \{GL\}_3(\mathbb \{Q\}_\{p\})$, associé à certaines représentations semi-stables de dimension $3$ du groupe de Galois absolu de $\mathbb \{Q\}_\{p\}$. Nous montrons ensuite que l’on peut retrouver le $(\varphi ,N)$-module filtré de la représentation galoisienne en considérant les morphismes, dans la catégorie dérivée des $D(\mathrm \{GL\}_3(\mathbb \{Q\}_\{p\}))$-modules, de ce complexe dans le complexe de de Rham de l’espace de Drinfel’d de dimension $2$. La preuve requiert le calcul de certains espaces de cohomologie localement analytiques de sous-groupes unipotents à coefficients dans des séries principales localement analytiques.},
author = {Schraen, Benjamin},
journal = {Annales scientifiques de l'École Normale Supérieure},
keywords = {$p$-adic Langlands correspondence; Drinfel’d’s spaces; $p$-adic locally analytic representations},
language = {fre},
number = {1},
pages = {43-145},
publisher = {Société mathématique de France},
title = {Représentations localement analytiques de $\mathrm \{GL\}_3(\mathbb \{Q\}_\{p\})$},
url = {http://eudml.org/doc/272235},
volume = {44},
year = {2011},
}
TY - JOUR
AU - Schraen, Benjamin
TI - Représentations localement analytiques de $\mathrm {GL}_3(\mathbb {Q}_{p})$
JO - Annales scientifiques de l'École Normale Supérieure
PY - 2011
PB - Société mathématique de France
VL - 44
IS - 1
SP - 43
EP - 145
AB - Nous construisons un complexe de représentations localement analytiques de $\mathrm {GL}_3(\mathbb {Q}_{p})$, associé à certaines représentations semi-stables de dimension $3$ du groupe de Galois absolu de $\mathbb {Q}_{p}$. Nous montrons ensuite que l’on peut retrouver le $(\varphi ,N)$-module filtré de la représentation galoisienne en considérant les morphismes, dans la catégorie dérivée des $D(\mathrm {GL}_3(\mathbb {Q}_{p}))$-modules, de ce complexe dans le complexe de de Rham de l’espace de Drinfel’d de dimension $2$. La preuve requiert le calcul de certains espaces de cohomologie localement analytiques de sous-groupes unipotents à coefficients dans des séries principales localement analytiques.
LA - fre
KW - $p$-adic Langlands correspondence; Drinfel’d’s spaces; $p$-adic locally analytic representations
UR - http://eudml.org/doc/272235
ER -
References
top- [1] I. N. Bernstein & A. V. Zelevinsky, Induced representations of reductive -adic groups. I, Ann. Sci. École Norm. Sup. 10 (1977), 441–472. Zbl0412.22015
- [2] S. J. Bloch, Higher regulators, algebraic -theory, and zeta functions of elliptic curves, CRM Monograph Series 11, Amer. Math. Soc., 2000. Zbl0958.19001
- [3] A. Borel, Cohomologie de et valeurs de fonctions zeta aux points entiers, Ann. Scuola Norm. Sup. Pisa Cl. Sci.4 (1977), 613–636. Zbl0382.57027
- [4] A. Borel & N. R. Wallach, Continuous cohomology, discrete subgroups, and representations of reductive groups, Annals of Math. Studies 94, Princeton Univ. Press, 1980. Zbl0443.22010
- [5] N. Bourbaki, Topologie générale. Chapitre 9, Hermann, 1974.
- [6] C. Breuil, Sur quelques représentations modulaires et -adiques de . II, J. Inst. Math. Jussieu 2 (2003), 23–58. Zbl1165.11319
- [7] C. Breuil, Invariant et série spéciale -adique, Ann. Sci. École Norm. Sup.37 (2004), 559–610. Zbl1166.11331
- [8] C. Breuil, Série spéciale -adique et cohomologie étale complétée, Astérisque331 (2010), 65–115. Zbl1246.11106
- [9] C. Breuil & A. Mézard, Représentations semi-stables de , demi-plan -adique et réduction modulo , Astérisque331 (2010), 117–178. Zbl1271.11106
- [10] C. Breuil & P. Schneider, First steps towards -adic Langlands functoriality, J. reine angew. Math. 610 (2007), 149–180. Zbl1180.11036
- [11] C. J. Bushnell & G. Henniart, The local Langlands conjecture for , Grund. Math. Wiss. 335, Springer, 2006. Zbl1100.11041
- [12] W. Casselman & D. Wigner, Continuous cohomology and a conjecture of Serre’s, Invent. Math.25 (1974), 199–211. Zbl0297.20060
- [13] R. F. Coleman, Dilogarithms, regulators and -adic -functions, Invent. Math.69 (1982), 171–208. Zbl0516.12017
- [14] R. F. Coleman & A. Iovita, Hidden structures on semistable curves, Astérisque331 (2010), 179–254. Zbl1251.11047
- [15] P. Colmez, Une correspondance de Langlands locale -adique pour les représentations semi-stables de dimension , preprint, 2004.
- [16] P. Colmez, La série principale unitaire de , Astérisque330 (2010), 213–262. Zbl1242.11095
- [17] P. Colmez, Représentations de et -modules, Astérisque330 (2010), 281–509. Zbl1218.11107
- [18] P. Colmez & J.-M. Fontaine, Construction des représentations -adiques semi-stables, Invent. Math.140 (2000), 1–43. Zbl1010.14004MR1779803
- [19] J. F. Dat, Espaces symétriques de Drinfeld et correspondance de Langlands locale, Ann. Sci. École Norm. Sup.39 (2006), 1–74. Zbl1141.22004
- [20] J. Dixmier, Algèbres enveloppantes, Gauthier-Villars, 1974, Cahiers scientifiques, fasc. XXXVII. Zbl0308.17007
- [21] M. Emerton, -adic -functions and unitary completions of representations of -adic reductive groups, Duke Math. J.130 (2005), 353–392. Zbl1092.11024MR2181093
- [22] M. Emerton, Jacquet modules of locally analytic representations of -adic reductive groups II. The relation to parabolic induction, à paraître dans J. Inst. Math. de Jussieu.
- [23] J.-M. Fontaine, Représentations -adiques semi-stables, Astérisque223 (1994), 113–184. Zbl0865.14009MR1293972
- [24] H. Frommer, The locally analytic principal series of split reductive groups, preprint SFB 478/265 http://wwwmath.uni-muenster.de/sfb/about/publ/heft265.ps, 2003.
- [25] E. Grosse-Klönne, Frobenius and monodromy operators in rigid analysis, and Drinfelʼd’s symmetric space, J. Algebraic Geom.14 (2005), 391–437. Zbl1084.14021MR2129006
- [26] E. Grosse-Klönne, On the -adic cohomology of some -adically uniformized varieties, J. Algebraic Geom. (2010). Zbl1210.14022MR2729278
- [27] J. E. Humphreys, Introduction to Lie algebras and representation theory, Graduate Texts in Math. 9, Springer, 1978. Zbl0447.17001MR499562
- [28] J. E. Humphreys, Representations of semisimple Lie algebras in the BGG category , Graduate Studies in Math. 94, Amer. Math. Soc., 2008. Zbl1177.17001MR2428237
- [29] A. Iovita & M. Spiess, Logarithmic differential forms on -adic symmetric spaces, Duke Math. J.110 (2001), 253–278. Zbl1100.14505MR1865241
- [30] T. Ito, Weight-monodromy conjecture for -adically uniformized varieties, Invent. Math.159 (2005), 607–656. Zbl1154.14014MR2125735
- [31] B. Keller, Derived categories and their uses, in Handbook of algebra, Vol. 1, North-Holland, 1996, 671–701. Zbl0862.18001MR1421815
- [32] A. W. Knapp, Lie groups, Lie algebras, and cohomology, Mathematical Notes 34, Princeton Univ. Press, 1988. Zbl0648.22010MR938524
- [33] A. W. Knapp, Representation theory of semisimple groups, Princeton Landmarks in Mathematics, Princeton Univ. Press, 2001. Zbl0993.22001MR1880691
- [34] J. Kohlhaase, Invariant distributions on -adic analytic groups, Duke Math. J.137 (2007), 19–62. Zbl1133.11066MR2309143
- [35] J. Kohlhaase, The cohomology of locally analytic representations, preprint SFB 478/491 http://wwwmath.uni-muenster.de/sfb/about/publ/heft491.pdf, à paraître dans J. reine angew. Math. Zbl1226.22020MR2774315
- [36] J.-L. Koszul, Homologie et cohomologie des algèbres de Lie, Bull. Soc. Math. France78 (1950), 65–127. Zbl0039.02901MR36511
- [37] C. T. Féaux de Lacroix, Einige Resultate über die topologischen Darstellungen -adischer Liegruppen auf unendlich dimensionalen Vektorräumen über einem -adischen Körper, Schriftenreihe Math. Inst. Univ. Münster23 (1999), 1–111. Zbl0963.22009MR1691735
- [38] C. C. Moore, Group extensions and cohomology for locally compact groups. III, Trans. Amer. Math. Soc. 221 (1976), 1–33. Zbl0366.22005MR414775
- [39] S. Orlik, On extensions of generalized Steinberg representations, J. Algebra293 (2005), 611–630. Zbl1080.22008MR2173717
- [40] S. Orlik, Equivariant vector bundles on Drinfeld’s upper half space, Invent. Math.172 (2008), 585–656. Zbl1136.22009MR2393081
- [41] S. Orlik & M. Strauch, On Jordan-Hölder Series of some Locally Analytic Representations, preprint arXiv :1001.0323. Zbl1307.22009
- [42] S. Orlik & M. Strauch, On the irreducibility of locally analytic principal series representations, preprint arXiv :math/0612809, à paraître dans Representation Theory. Zbl1247.22018MR2738585
- [43] D. Prasad, Locally algebraic representations of -adic groups, Representation Theory5 (2001), 111–128. Zbl1028.17007MR1835001
- [44] P. Schneider, The cohomology of local systems on -adically uniformized varieties, Math. Ann.293 (1992), 623–650. Zbl0774.14022MR1176024
- [45] P. Schneider, Nonarchimedean functional analysis, Springer Monographs in Math., Springer, 2002. Zbl0998.46044MR1869547
- [46] P. Schneider & U. Stuhler, The cohomology of -adic symmetric spaces, Invent. Math.105 (1991), 47–122. Zbl0751.14016MR1109620
- [47] P. Schneider & J. Teitelbaum, -finite locally analytic representations, Represent. Theory5 (2001), 111–128. Zbl1028.17007MR1835001
- [48] P. Schneider & J. Teitelbaum, Locally analytic distributions and -adic representation theory, with applications to , J. Amer. Math. Soc.15 (2002), 443–468. Zbl1028.11071MR1887640
- [49] P. Schneider & J. Teitelbaum, -adic boundary values, Astérisque278 (2002), 51–125. Zbl1051.14024MR1922824
- [50] P. Schneider & J. Teitelbaum, Algebras of -adic distributions and admissible representations, Invent. Math.153 (2003), 145–196. Zbl1028.11070MR1990669
- [51] P. Schneider & J. Teitelbaum, Duality for admissible locally analytic representations, Represent. Theory9 (2005), 297–326. Zbl1146.22301MR2133762
- [52] B. Schraen, Représentations -adiques de et catégories dérivées, Israel J. Math.176 (2010), 307–361. Zbl1210.11066MR2653197
- [53] E. de Shalit, The -adic monodromy-weight conjecture for -adically uniformized varieties, Compos. Math.141 (2005), 101–120. Zbl1087.14019MR2099771
- [54] C. A. Weibel, An introduction to homological algebra, Cambridge Studies in Advanced Math. 38, Cambridge Univ. Press, 1994. Zbl0797.18001MR1269324
- [55] N. Yoneda, On Ext and exact sequences, J. Fac. Sci. Univ. Tokyo Sect. I8 (1960), 507–576. Zbl0163.26902MR225854
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.