Time-delay operators in semiclassical limit, finite range potentials
Annali della Scuola Normale Superiore di Pisa - Classe di Scienze (1988)
- Volume: 15, Issue: 1, page 1-34
- ISSN: 0391-173X
Access Full Article
topHow to cite
topWang, Xue Ping. "Time-delay operators in semiclassical limit, finite range potentials." Annali della Scuola Normale Superiore di Pisa - Classe di Scienze 15.1 (1988): 1-34. <http://eudml.org/doc/84024>.
@article{Wang1988,
author = {Wang, Xue Ping},
journal = {Annali della Scuola Normale Superiore di Pisa - Classe di Scienze},
keywords = {time-delay operators; semiclassical limit},
language = {eng},
number = {1},
pages = {1-34},
publisher = {Scuola normale superiore},
title = {Time-delay operators in semiclassical limit, finite range potentials},
url = {http://eudml.org/doc/84024},
volume = {15},
year = {1988},
}
TY - JOUR
AU - Wang, Xue Ping
TI - Time-delay operators in semiclassical limit, finite range potentials
JO - Annali della Scuola Normale Superiore di Pisa - Classe di Scienze
PY - 1988
PB - Scuola normale superiore
VL - 15
IS - 1
SP - 1
EP - 34
LA - eng
KW - time-delay operators; semiclassical limit
UR - http://eudml.org/doc/84024
ER -
References
top- [1] S. Agmon, "Spectral properties of Schrödinger operators and scattering theory". Ann. Scuola Norm. Sup. Pisa (4), 2 (1975), 151-218. Zbl0315.47007MR397194
- [2] S. Albeverio - T. Arede, "The relation between quantum mechanics and classical mechanics, A survey of some mathematical aspects". To appear in Proc. Como Conf. 1983, Plenum.
- [3] J. Chazarain, "Sur le comportement semi-classique du spectre et de l'amplitude de diffusion d' un Hamiltonien". In "Singularities in Boundary Value Problems", pp. 1-17, ed. H. Garnir, R. Reidel, Publ.1981. Zbl0486.70020
- [4] V. Enss - B. Simon, "Finite total cross sections in non-relativistic quantum mechanics". Comm. Math. Phys.76 (1980), 177-209. Zbl0471.35065MR587510
- [5] R. Froese - I. Herbst, "Exponential bounds and absence of positive eigenvalue for N-body Schrödinger operators". Comm. Math., Phys. (1982). Zbl0509.35061MR682117
- [6] D. Fujiwara, "A construction of fundamental solution for the Schrödinger equation". J. Anal. Math., 35 (1979), 41-96. Zbl0418.35032MR555300
- [7] V. Guillemin, "Sojourn times and asymptotic properties of scattering matrix". Publ. RIMS, Kyoto Univ. Suppl. 12, (1977), 69-88. Zbl0381.35064MR448453
- [8] K. Gustafon - K. Sinha, "On the Eisenbud-Wigner formula for time delay". Lett., in Math. Phys., 4 (1980), 381. Zbl0453.47003MR596509
- [9] B. Helffer - D. Robert, "Comportement semi-classique des Hamiltoniens quantiques elliptiques". Ann. Inst. Fourier (Grenoble), 31 (3) (1983), 169-223. Zbl0451.35022MR638623
- [10] B. Helffer - D. Robert, "Calcul fonctionnel par la transformation de Mellin et opérateurs admissibles". J. Funct. Anal., 53 (3) (1983), 246-268. Zbl0524.35103MR724029
- [11] K. Hepp, "The classical limit for quantum mechanical correlation functions". Comm. Math. Phys., 35 (1974), 265-277. MR332046
- [12] L. Hormander, "The Weyl calculus of pseudo-differential operators". Comm. Pure Appl. Math., 32 (1979), 359-443. Zbl0388.47032MR517939
- [13] W. Hunziker, "The S-matrix in classical mechanics". Comm. Math. Phys., 8 (1968), 75-104. Zbl0159.55001MR1552543
- [14] A. Jensen, "Time-delay in potential scattering theory, some "geometric" results". Comm. Math. Phys., 82 (1981), 435-456. Zbl0483.47031MR641772
- [15] A. Jensen, "On Lavine's formula for time-delay". Math. Scand., 54 (1984), 253-261. Zbl0529.46006MR757466
- [16] R. Lavine, "Commutators and local decay, in "scattering theory in mathematical physics". pp. 141-156, eds. J.A. Lavita and J.P. Marchand, D. Reidel Publ. 1974. Zbl0298.35015
- [17] P. Lax - R. Phillips, "The time-delay operator and a related trace formula". Topics in functional analysis, pp. 197-215, eds. I. Gohberg, M. Kac; Acad. Press, 1978. Zbl0463.47006MR538021
- [18] Ph. Martin, "Time delay of quantum scattering processes". Acta Phys. Austriaca, Suppl. 23 (1981), 157-208. MR665756
- [19] V.P. Maslov - M.V. Fedoriuk, "Semi-classical approximation in Quantum mechanics", D. Reidel, Dordrecht, 1981. Zbl0458.58001
- [20] E. Mourre, "Link between the geometrical and the spectral transformation approches in scattering theory". Comm. Math. Phys.68 (1979), 91-94. Zbl0429.47006MR539739
- [21] E. Mourre, "Opérateurs conjugués et propriétés de propagation". Comm. Math. Phys., 91 (1983), 279-300. Zbl0543.47041MR723552
- [22] H. Narnhofer, "Another definition for time-delay". Phys. Rev., D22 (1980), 2387-2390. MR594228
- [23] H. Narnhofer, "Time-delay and dilation properties in scattering theory". J. Math. Phys., 25 (1984), 987-991. Zbl0565.35098MR739251
- [24] V. Petkov - G. Popov, "Asymptotic behaviour of scattering phase for non-trapping obstacles". Ann. Inst. Fourier Grenoble, 32 (1982), 111-149. Zbl0476.35014MR688023
- [25] Yu. N. Protas, "Quasiclassical asymptotics of the scattering amplitude for the scattering of a plane wave by inhomogeneities of the medium". Mth. USSR Sb., 45 (1983), 487-506. Zbl0549.35101
- [26] M. Reed - B. Simon, "Methods of modern mathematical physics, III, scattering theory". Acad. Press.New-York, 1979. Zbl0405.47007MR529429
- [27] M. Reed - B. Simon, "Method of modern mathematical physics, IV analysis of operators". Acad. Press, New-York, 1978. Zbl0401.47001MR493421
- [28] D. Robert, "Autour de l'approximation semi-classique". Notas de Curso, n° 21, Recife, 1983.
- [29] D. Robert, "Calcul fonctionnel sur les opérateurs admissibles et applications". J. Funct. Anal., 45 (1), (1982), 74-94. Zbl0482.35069MR645646
- [30] D. Robert - H. Tamura, "Semi-classical bounds for resolvents of Schrödinger operators and asymptotic for scattering phase". Comm. P.D.E., 9 (10) (1984), 1017-1058. Zbl0561.35021MR755930
- [31] D. Robert - H. Tamura, "Semi-classical asymptotic for spectral function of Schrödinger operators and applications to scattering problems", to appear.
- [32] B. Simon, "Wave operators for classical particle scattering". Comm. Math. Phys., 23 (1971), 37-48. Zbl0238.70012MR294899
- [33] B. Simon, "The classical limit of quantum partition functions". Comm. Math. Phys., 71 (1980), 247-276. Zbl0436.22012MR565281
- [34] M. Siruge - A. Siruge-Collin - A. Truman, "Semi-classical approximation and microcanonical ensemble". Annales de l'IHP, 41 (4) (1984), 429-444. Zbl0592.58048MR777915
- [35] B.R. Vainberg, "Quasi-classical approximation in stationary scattering problems". Funct. Anal. Appl. (Engl. Transl.), 11 (1977), 6-18. Zbl0381.35022
- [36] X.P. Wang, "Comportement semi-classique de traces partielles" . C.R. Acad. Sc.Paris, 299 (17) (1984), 867-870. Zbl0573.47046MR777750
- [37] X.P. Wang, "Asymptotic behaviour of spectral means of pseudo-differential operators". J. Approx. Theory and Appl., 1 (3), 1985. Zbl0595.47036MR816608
- [38] X.P. Wang, "Approximation semi-classique de l'Equation de Heisenberg, Comm. Math. Phys.104 (1986). Zbl0611.35085MR834482
- [39] X.P. Wang, "Opérateurs de temps-retard dans la théorie de diffusion". Exposé aux Journées de St. Jean de Mont, Juin 1985. Zbl0699.35198
- [40] K. Yajima, "The quasi-classical limit of quantum scattering theory". Comm. Math. Phys.69 (1979), 101-129. Zbl0425.35076MR548744
- [41] K. Yajima, "The quasi-classical limit of scattering amplitude I, finite range potentials". Preprint. Zbl0591.35079
- [42] X.P. Wang, "Time-decay of scattering solutions and smothness of resolvent for Schrödinger operators", J. Diff. Equations, 71 (1988), 348-396. Zbl0651.35022MR927007
- [43] X.P. Wang, "Opérateurs de temps-retard dans la théorie de la diffusion, C.R. Acad. Sc. Paris, 301 (17) (1985), 789-791. Zbl0586.47006MR822832
- [44] J.M. Bony - N. Lerner, "Quantification asymptotique et micro-localisation d' ordre supérieure". Séminaire Equations aux Dérivées Partielles1986-1987, Ecole Polytechnique, Palaiseau. Zbl0654.35005MR920021
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.