Invariant pluricomplex Green functions

Maciej Klimek

Banach Center Publications (1995)

  • Volume: 31, Issue: 1, page 207-226
  • ISSN: 0137-6934

Abstract

top
The purpose of this paper is to present a concise survey of the main properties of biholomorphically invariant pluricomplex Green functions and to describe a number of new examples of such functions. A concept of pluricomplex geodesics is also discussed.

How to cite

top

Klimek, Maciej. "Invariant pluricomplex Green functions." Banach Center Publications 31.1 (1995): 207-226. <http://eudml.org/doc/262801>.

@article{Klimek1995,
abstract = {The purpose of this paper is to present a concise survey of the main properties of biholomorphically invariant pluricomplex Green functions and to describe a number of new examples of such functions. A concept of pluricomplex geodesics is also discussed.},
author = {Klimek, Maciej},
journal = {Banach Center Publications},
keywords = {survey; plurisubharmonic Green function; complex Monge-Ampère operator; pluricomplex Green function},
language = {eng},
number = {1},
pages = {207-226},
title = {Invariant pluricomplex Green functions},
url = {http://eudml.org/doc/262801},
volume = {31},
year = {1995},
}

TY - JOUR
AU - Klimek, Maciej
TI - Invariant pluricomplex Green functions
JO - Banach Center Publications
PY - 1995
VL - 31
IS - 1
SP - 207
EP - 226
AB - The purpose of this paper is to present a concise survey of the main properties of biholomorphically invariant pluricomplex Green functions and to describe a number of new examples of such functions. A concept of pluricomplex geodesics is also discussed.
LA - eng
KW - survey; plurisubharmonic Green function; complex Monge-Ampère operator; pluricomplex Green function
UR - http://eudml.org/doc/262801
ER -

References

top
  1. [AP] M. Abate and G. Patrizio, Uniqueness of complex geodesics and characterization of circular domains, Manuscripta Math. 74 (1992), 277-297. Zbl0758.53039
  2. [A] A. Aytuna, On Stein manifolds M for which O(M) is isomorphic to O ( Δ n ) , Manuscripta Math., 62 (1988), 297-315. Zbl0662.32014
  3. [A1] K. Azukawa, Two intrinsic pseudo-metrics with pseudoconvex indicatrices and starlike circular domains, J. Math. Soc. Japan 38 (1986), 627-647. Zbl0607.32015
  4. [A2] K. Azukawa, The invariant pseudo-metric related to negative plurisubharmonic functions, Kodai Math. J. 10 (1987), 83-92. Zbl0618.32020
  5. [BL] T. Bagby and N. Levenberg, Bernstein theorems for harmonic functions, preprint, Indiana University, Bloomington, 1992. 
  6. [B] E. Bedford, Survey of pluri-potential theory, preprint, 1990. 
  7. [BD] E. Bedford and J.-P. Demailly, Two counterexamples concerning the pluri-complex Green function in C n , Indiana Univ. Math. J. 37 (1988), 865-867. Zbl0681.32014
  8. [BT1] E. Bedford and B. A. Taylor, The Dirichlet problem for a complex Monge-Ampère equation, Invent. Math. 37 (1976), 1-44. Zbl0315.31007
  9. [BT2] E. Bedford and B. A. Taylor, A new capacity for plurisubharmonic functions, Acta Math. 149 (1982), 1-40. Zbl0547.32012
  10. [BT3] E. Bedford and B. A. Taylor, Plurisubharmonic functions with logarithmic singularities, Ann. Inst. Fourier (Grenoble) 38 (1988), 133-171. Zbl0626.32022
  11. [BT4] E. Bedford and B. A. Taylor, Uniqueness for the complex Monge-Ampère equation for functions of logarithmic growth, Indiana Univ. Math. J. 38 (1989), 455-469. Zbl0677.32002
  12. [BŁ] Z. Błocki, Estimates for the complex Monge-Ampère operator, preprint, Jagiellonian University, Cracow, 1992. 
  13. [BR] F. T. Brawn, The Green and Poisson kernels for the strip n × ] 0 , 1 [ , J. London Math. Soc. 2 (1970), 439-454. Zbl0197.08502
  14. [C1] U. Cegrell, Capacities in Complex Analysis, Aspects of Mathematics, Vieweg, Wiesbaden, 1988. Zbl0655.32001
  15. [C2] U. Cegrell, The symmetric pluricomplex Green function, this volume, 135-141. Zbl0831.31008
  16. [CLN] S. S. Chern, H. Levine and L. Nirenberg, Intrinsic norms on a complex manifold, in: Global analysis, papers in honour of K. Kodaira, University of Tokyo Press, 1969, 119-139. 
  17. [D1] J. -P. Demailly, Mesures de Monge-Ampère et caractérisation géométrique des variétés algébriques affines, Mém. Soc. Math. France 19 (1985), 1-125. 
  18. [D2] J. -P. Demailly, Mesures de Monge-Ampère et mesures pluri-sousharmoniques, Math. Z. 194 (1987), 519-564. Zbl0595.32006
  19. [D] S. Dineen, The Schwarz Lemma, Oxford Math. Monographs, Clarendon Press, Oxford, 1989. Zbl0708.46046
  20. [DG] S. Dineen and F. Gaughran, Maximal plurisubharmonic functions on domains in Banach spaces, preprint, University College Dublin, 1992. Zbl1080.46517
  21. [DT] S. Dineen and R. M. Timoney, Complex geodesics on complex domains, in: Progress in Functional Analysis, K. D. Bierstedt, J. Bonet, J. Horváth and M. Maestre (eds.), Elsevier, 1992, 333-365. Zbl0785.46044
  22. [H1] M. Hervé, Lindelöf's principle in infinite dimensions, in: Proceedings on Infinite Dimensional Holomorphy, T. L. Hayden and T. J. Suffridge (eds.), Lecture Notes in Math. 364, Springer, Berlin, 1974, 41-57. 
  23. [H2] M. Hervé, Analyticity in Infinite Dimensional Spaces, de Gruyter Stud. Math. 10, Walter de Gruyter, Berlin, 1989. 
  24. [JP1] M. Jarnicki and P. Pflug, Invariant pseudodistances and pseudometrics - completeness and product property, Ann. Polon. Math. 60 (1991), 169-189. Zbl0756.32016
  25. [JP2] M. Jarnicki and P. Pflug, Invariant Distances and Metrics in Complex Analysis, Walter de Gruyter & Co, 1993. Zbl0789.32001
  26. [K] C. O. Kiselman, Sur la définition de l'opérateur de Monge-Ampère complexe, in: Analyse complexe, proceedings, Toulouse 1983, E. Amar, R. Gay, and Nguyen Thanh Van (eds.), Lecture Notes in Math. 1094, Springer, Berlin, 1983, 139-150. 
  27. [K1] M. Klimek, Extremal plurisubharmonic functions and invariant pseudodistances, Bull. Soc. Math. France 113 (1985), 231-240. Zbl0584.32037
  28. [K2] M. Klimek, Infinitesimal pseudometrics and the Schwarz lemma, Proc. Amer. Math. Soc. 105 (1989), 134-140. Zbl0681.32018
  29. [K3] M. Klimek, Pluripotential Theory, London Math. Soc. Monographs (New Series), Clarendon Press, Oxford, 1991. 
  30. [KR] S. L. Krushkal, The Green function of Teichmüller spaces with applications, Bull. Amer. Math. Soc. 27 (1992), 143-147. 
  31. [L] P. Lelong, Fonction de Green pluricomplexe pour les espaces de Banach, J. Math. Pures Appl. 68 (1989), 319-347. Zbl0633.32019
  32. [L1] L. Lempert, La métrique de Kobayashi et la représentation des domaines sur la boule, Bull. Soc. Math. France 109 (1981), 427-474. 
  33. [L2] L. Lempert, Holomorphic retracts and intrinsic metrics in convex domains, Anal. Math. 8 (1982), 257-261. Zbl0509.32015
  34. [L3] L. Lempert, Solving the degenerate Monge-Ampère equation with one concentrated singularity, Math. Ann. 263 (1983), 515-532. Zbl0531.35020
  35. [M] S. Momm, Boundary behaviour of extremal plurisubharmonic functions, preprint, University of Düsseldorf, 1992. 
  36. [PS] E. A. Poletskiĭ and B. V. Shabat, Invariant metrics, in: Encyclopaedia of Mathematical Sciences 9, Several Complex Variables III, G. M. Khenkin (ed.), trans. J. Peetre, Springer, Berlin, 1989, 63-111. 
  37. [RT] J. Rauch and B. A. Taylor, The Dirichlet problem for the multidimensional Monge-Ampère equation, Rocky Mountain J. Math. 7 (1977), 345-364. Zbl0367.35025
  38. [S] A. Sadullaev, Plurisubharmonic measures and capacities on complex manifolds, Russian Math. Surveys 36 (4) (1981), 61-119. Zbl0494.31005
  39. [SE] S. Semmes, A generalization of Riemann mappings and geometric structures on a space of domains in C n , Mem. Amer. Math. Soc. 472 (1992). 
  40. [SI] N. Sibony, Quelques problèmes de prolongement de courants en analyse complexe, Duke Math. J. 52 (1985), 157-97. Zbl0578.32023
  41. [V1] E. Vesentini, Variations on a theme of Carathéodory, Ann. Scuola Norm. Sup. Pisa 4 (1979), 39-68. Zbl0413.46039
  42. [V2] E. Vesentini, Complex geodesics, Compositio Math. 44 (1981), 375-394. Zbl0488.30015
  43. [V3] E. Vesentini, Complex geodesics and holomorphic maps, Symposia Math. 26 (1982), 211-230. 
  44. [Z] A. Zeriahi, Fonction de Green pluricomplexe à pôle à l'infini sur un espace de Stein parabolique et applications, Math. Scand. 69 (1991), 89-126. 

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.