Théorie d'Iwasawa classique et de l'algèbre de Hecke ordinaire

Jacques Tilouine

Compositio Mathematica (1988)

  • Volume: 65, Issue: 3, page 265-320
  • ISSN: 0010-437X

How to cite

top

Tilouine, Jacques. "Théorie d'Iwasawa classique et de l'algèbre de Hecke ordinaire." Compositio Mathematica 65.3 (1988): 265-320. <http://eudml.org/doc/89893>.

@article{Tilouine1988,
author = {Tilouine, Jacques},
journal = {Compositio Mathematica},
keywords = {Iwasawa theory; Hecke algebra; Hida module; ray class field; characteristic series},
language = {fre},
number = {3},
pages = {265-320},
publisher = {Kluwer Academic Publishers},
title = {Théorie d'Iwasawa classique et de l'algèbre de Hecke ordinaire},
url = {http://eudml.org/doc/89893},
volume = {65},
year = {1988},
}

TY - JOUR
AU - Tilouine, Jacques
TI - Théorie d'Iwasawa classique et de l'algèbre de Hecke ordinaire
JO - Compositio Mathematica
PY - 1988
PB - Kluwer Academic Publishers
VL - 65
IS - 3
SP - 265
EP - 320
LA - fre
KW - Iwasawa theory; Hecke algebra; Hida module; ray class field; characteristic series
UR - http://eudml.org/doc/89893
ER -

References

top
  1. 1 M. Atiyah et I. Macdonald, Introduction to Commutative Algebra. Addison-Wesley (1969). Zbl0175.03601MR242802
  2. 2 J. Coates, p-adic L functions and Iwasawa theory, in Algebraic Number Fields, edited by A. Fröhlich, Academic Press (1977). Zbl0393.12027MR460282
  3. 3 C. Curtis et I. Reiner, Representation Theory of Finite Groups and Associative Algebras, Interscience Puublishers (1962). Zbl0131.25601MR144979
  4. 4 K. Doi et M. Ohta, On some congruences between cusp forms on Γ0(N), in Modular Functions of One Variable, Proceedings International Conference, University of Bonn, L.N.M.601, Springer-Verlag (1977) 91-105. Zbl0361.10023
  5. 5 P. Gabriel, Construction de Préschémas Quotients, Exposé V in SGA 3 (Schémas en Groupes I), Séminaire de Géométrie Algébrique du Bois Marie 1962/64, dirigé par M. Demazure et A. Grothendieck, L.N.M.151, Springer-Verlag (1970) 250-286. MR257095
  6. 6 H. Hida, Congruences of cusp forms and special values of their zeta functions. Inv. Math.63 (1981) 225-261. Zbl0459.10018MR610538
  7. 7 H. Hida, On congruence divisor of cusp forms as factors of the special values of their zeta functions. Inv. Math.64 (1981) 221-262. Zbl0472.10028MR629471
  8. 8 H. Hida, Kummer's criterion for the special values of Hecke L-functions of imaginary quadratic fields and congruences among cusp forms. Inv. Math.66 (1982) 415-459. Zbl0485.10019MR662601
  9. 9 H. Hida, A p-adic measure attached to the zeta functions associated with two elliptic modular forms, I. Inv. Math.79 (1985) 159-195. Zbl0573.10020MR774534
  10. 10 H. Hida, Iwasawa modules attached to congruences of cusp forms: Ann. Scient. Ec. Norm. Sup.4ème série t. 19 (1986) 231-273. Zbl0607.10022MR868300
  11. 11 H. Hida, Galois representations into GL2(Zp[[X]]) attached to ordinary cusp forms. Inv. Math.85 (1986) 545-613. Zbl0612.10021MR848685
  12. 12 J.I. Igusa, Kroneckerian model of fields of elliptic modular functions. Amer. J. Math.81 (1959) 561-577. Zbl0093.04502MR108498
  13. 13 N. Katz, Higher congruences between modular forms. Ann. of Math.101 (1975) 332-367. Zbl0356.10020MR417059
  14. 14 S. Lang, Cyclotomic Fields I. Springer-Verlag (1978). Zbl0395.12005MR485768
  15. 15 R.-P. Langlands, Automorphic Forms and l-adic representations, in Proceedings International Summer School on Modular Functions of One Variable, II, Antwerp 1972, L.N.M.349, Springer-Verlag (1973) 361-500. Zbl0279.14007
  16. 16 B. Mazur et A. Wiles, On p-adic analytic fammilies of Galois representations. Comp. Math.59 (1986) 231-264. Zbl0654.12008MR860140
  17. 17 B. Perrin-Riou, Arithmétique des Courbes Elliptiques et Théorie d'Iwasawa, Mémoires de la S.M.F. No 17, Nouvelle Série (1984). Zbl0599.14020
  18. 18 K. Ribet, A Modular construction of unramified extensions of Q(μp). Inv. Math.34 (1976) 151-162. Zbl0338.12003
  19. 19 K. Ribet, Galois representations attached to eigennforms with Nebentypus, in Modular Functions of One Variable V, L.N.M.601, Springer-Verlag (1977) 17-52. Zbl0363.10015MR453647
  20. 20 J.-P. Serre, Représentations Linéaires des Groupes finis. Hermann (1967). Zbl0407.20003MR232867
  21. 21 J.-P. Serre et J. Tate, Good reduction of abelian varieties. Ann. of Math.88 (1968) 492-517. Zbl0172.46101MR236190
  22. 22 G. Shimura, Introduction to the Arithmetic Theory of Automorphic Forms, Iwanami Shoten Publishers and Princeton University Press (1971). Zbl0221.10029
  23. 23 G. Shimura, On Elliptic curves with complex multiplication as factors of the jacobians of modular function fields. Nagoya Math. J.43 (1971) 199-208. Zbl0225.14015MR296050
  24. 24 J. Tilouine, Un sous-groupe p-divisible de la jacobienne de X1 (Npr) comme module sur l'algèbre de Hecke (à paraître). 
  25. 25 A. Weil, Ueber die Bestimmung Dirichletscher Reihen durch Funktionalgleichungen. Math. Ann.168 (1967) 149-156. Zbl0158.08601MR207658
  26. 26 A. Wiles, Modular curves and the class-group of Q(μp). Inv. Math.58 (1980) 1-35. Zbl0436.12004
  27. 27 H. Carayol, Sur les représentations l-adiques attachées aux formes modulaires de Hilbert. C.R. Acad Sc. Paris296 Série I (1985) 629-632. Zbl0537.10018MR705677
  28. 28 H. Hida, Hecke Algebras for GL1 and GL2, Sém. de Théorie des Nombres de Paris (1985-86) 131-163. Zbl0648.10020MR897346
  29. 29 H. Matsumara, Commmutative Algebra, Benjamin (1970). 
  30. 30 B. Mazur et L. Roberts, Local Euler characteristics, Inv. Math.9 (1970) 201-234. Zbl0191.19202MR258844
  31. 31 B. Mazur et A. Wiles, Class fields of abelian extensions of Q, Inv. Math.76 (1984) 179-330. Zbl0545.12005MR742853

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.