Notes on the arithmetic of Fano threefolds

Yu I. Manin

Compositio Mathematica (1993)

  • Volume: 85, Issue: 1, page 37-55
  • ISSN: 0010-437X

How to cite


Manin, Yu I.. "Notes on the arithmetic of Fano threefolds." Compositio Mathematica 85.1 (1993): 37-55. <>.

author = {Manin, Yu I.},
journal = {Compositio Mathematica},
keywords = {points of bounded height; Fano threefold; arithmetic stratification},
language = {eng},
number = {1},
pages = {37-55},
publisher = {Kluwer Academic Publishers},
title = {Notes on the arithmetic of Fano threefolds},
url = {},
volume = {85},
year = {1993},

AU - Manin, Yu I.
TI - Notes on the arithmetic of Fano threefolds
JO - Compositio Mathematica
PY - 1993
PB - Kluwer Academic Publishers
VL - 85
IS - 1
SP - 37
EP - 55
LA - eng
KW - points of bounded height; Fano threefold; arithmetic stratification
UR -
ER -


  1. [AltK1] A.B. Altman and S.I. Kleiman, Foundations of the theory of Fano schemes, Comp. Math.34(1977), 3-47. Zbl0414.14024MR569043
  2. [Ba] V.V. Batyrev, Toroidal Fano threefolds, Math. USSR Izv.19 (1982), 13-25. Zbl0495.14027
  3. [BaMa] V.V. Batyrev and Yu. I. Manin, Sur le nombre des points rationnels de hauteur borné des variétés algébriques, Math. Annalen Bd.286 (1990), 27-43. Zbl0679.14008MR1032922
  4. [BarVe] W. Barth and A. van de Ven, Fano varieties of lines on hypersurfaces, Arch. Math.31 (1978), 96-104. Zbl0383.14003MR510081
  5. [Beau] A. Beauville, Variétés de Prym et jacobiennes intermédiaires, Ann. Sci. ENS10 (1977), 304-392. Zbl0368.14018MR472843
  6. [BlMu] S. Bloch and J.P. Murre, On the Chow group of certain types of Fano threefolds, Comp. Math.39 (1979), 47-105. Zbl0426.14018MR539001
  7. [BoSp] A. Borel and T.A. Springer, Rationality properties of linear algebraic groups, in: Algebraic groups and discontinuous subgroups, Proc. Symp. Pure Math., vol. 9, 26-32, Providence RI, 1980. Zbl0199.06804MR205998
  8. [BoVe] L.P. Botta and A. Verra, The non-rationality of the generic Enriques threefold, Comp. Math.48 (1983), 167-184. Zbl0508.14032MR700002
  9. [CeVe] G. Ceresa and A. Verra, The Abel-Jacobi isomorphism for the sextic double solid, Pacific J. of Math.124 (1986), 85-105. Zbl0593.14026MR850668
  10. [Cl] C.H. Clemens, Double solids, Adv. Math.47 (1983), 107-230. Zbl0509.14045MR690465
  11. [ClCoMo] H. Clemens, J. Kollár and S. Mori, Higher dimensional complex geometry, Astérisque 166 (1988). Zbl0689.14016MR1004926
  12. [ClGr] H. Clemens and Ph.Griffiths, The intermediate Jacobian of the cubic threefold, Ann. of Math.95 (1982), 281-356. Zbl0214.48302MR302652
  13. [Co] A. Collino, Lines on quartic threefolds, J. Lond. Math. Soc. ser.2, 19 (1979), 257-267. Zbl0432.14024MR533324
  14. [CoMuWe] A. Collino, J.P. Murre and G. Welters, On the family of conics lying on a quartic threefold, Rend. Sem. Mat. Univers. Polit. Torino38 (1980), 151-181. Zbl0474.14023MR608936
  15. [Dem1] M. Demazure, A very simple proof of Bott's theorem, Inv. Math.33 (1976), 271-272. Zbl0383.14017MR414569
  16. [Dem2] M. Demazure, Automorphismes et déformations des variétés de Borel, Inv. Math.39 (1977), 179-186. Zbl0406.14030MR435092
  17. [Do] R. Donagi, Group law on the intersection of two quadrics, Ann. Scuola Norm. Sup. di PisaVII (1980), 217-239. Zbl0457.14023MR581142
  18. [FraMaTschi] J. Franke, Yu. I. Manin and Yu. Tschinkel, Rational points of bounded height on Fano varieties, Inv. Math.95 (1989), 421-435. Zbl0674.14012MR974910
  19. [Fu] T. Fujita, On the structure of polarized manifolds with total deficiency one, J. Math. Soc. Japan. I, 32 (1980); II, 33 (1981), 415-434; III, 36 (1984), 75-89. Zbl0541.14036
  20. [Gu1] N.P. Gushel, On Fano varieties of genus 6, Izv. AN SSSR, ser. mat. 46 (1982), 1159-1174 (in Russian). Zbl0554.14014MR682488
  21. [Gu2] N.P. Gushel, On Fano varieties of genus 8, Uspekhi38 (1983), 163-164 (in Russian). Zbl0524.14032MR693729
  22. [Is1] V.A. Iskovskih, Fano threefolds, I, II, Izv. AN SSSR41 (1977), 516-562; 42 (1978), 504-549 (in Russian). Zbl0407.14016MR463151
  23. [Is2] V.A. Iskovskih, Anticanonical models of three-dimensional algebraic varieties, VINITI, Sovr. Probl. Mat.12 (1979), 159-236 (in Russian); J. Sov. Math.13, no. 6 (1980), 745-814 (in translation). Zbl0428.14016MR537685
  24. [Is3] V.A. Iskovskih, Birational automorphisms of three-dimensional algebraic varieties, ibid. 159-236 (in Russian); ibid. 815-868 (in translation). Zbl0428.14017MR537686
  25. [Is4] V.A. Iskovskih, Lectures on algebraic threefolds, Fano threefolds, Moscow University, 1988 (in Russian). 
  26. [Le] M. Letizia, The Abel-Jacobi mapping for the quartic threefold, Inv. Math.75 (1984), 477-492. Zbl0571.14022MR735337
  27. [Ma] Yu. I. Manin, Cubic Forms, 2nd ed., North-Holland, Amsterdam, 1986. Zbl0582.14010MR833513
  28. [Mar] D.G. Markushevich, Numerical invariants of line families on certain Fano varieties, Mat. Sbornik116 (1981), 265-288 (in Russian). Zbl0492.14026MR637865
  29. [Mar-Des] M. Martin-Deschamps, Propriétés de descente des variétés à fibre cotangent ample, Ann. Inst. Fourier33 (1984), 39-64. Zbl0535.14013MR762693
  30. [MaTschi] Yu. I. Manin and Yu. Tschinkel, Points of bounded height on del Pezzo surfaces, 1991 (preprint). Zbl0782.14033
  31. [Me] J.Y. Merindol, Théorème de Torelli affine pour les intersections de deux quadriques, Inv. Math.80 (1985), 375-416. Zbl0554.14002MR791666
  32. [Mu] J.P. Murre, Classification of Fano threefolds according to Fano and Iskovskih, in: Algebraic threefolds, Proceedings, Varenna 1981Lect. N. Math. 947, Springer-Verlag (1982), 35-92. Zbl0492.14025MR672614
  33. [MoMu1] Sh. Mori and Sh. Mukai, Classification of Fano 3-folds with B2 ≽ 2, Manuscripta Math. 36, no. 2 (1981), 147-162. Zbl0478.14033
  34. [MoMu2] Sh. Mori and Sh. Mukai, On Fano threefolds with B2 ≽ 2, in: Advanced Studies in Pure Math. 1 (1983), Algebraic Varieties and Analytic Varieties, p. 101-129, Kinokuniya, Amsterdam-Tokyo, 1985. Zbl0537.14026
  35. [MoMu3] Sh. Mori and Sh. Mukai, Classification of Fano 3-folds with B2 ≽ 2, in: Algebraic and Topological Theories, Kinokuniya, Amsterdam-Tokyo, 1985, 496-548. Zbl0800.14021
  36. [Na] A.M. Nadel, The boundedness of degree of Fano varieties with Picard number one, 1990 (preprint MIT). Zbl0754.14026MR1115788
  37. [New] P.E. Newstead, Stable bundles of rank 2 and odd degree over a curve of genus 2, Topology7 (1968), 205-215. Zbl0174.52901MR237500
  38. [Pu1] A.V. Pukhlikov, Birational automorphisms of a three-dimensional quartic with the simplest singularity, Mat. Sbornik135 (1988), 472-496 (in Russian). Zbl0655.14006MR942134
  39. [Pu2] A.V. Pukhlikov, Birational automorphisms of a double space and double quadric, Izv. AN SSSR, ser. mat. 52 (1988), 229-239 (in Russian). Zbl0704.14008MR936532
  40. [Re1] M. Reid, The complete intersection of two or more quadrics, Ph.D. These, Cambridge Univ., 1972. 
  41. [Re2] M. Reid, Lines on Fano threefolds according to Shokurov, Inst. Mittag Loeffler Rep.11 (1980), 1-41. 
  42. [Se1] J.-P. Serre, Lectures on the Mordell-Weil theorem, Vieweg, Braunschweig-Wiesbaden, 1989. Zbl0676.14005MR1002324
  43. [Se2] J.-P. Serre, Comptes Rendus, 1990. 
  44. [Sh1] V.V. Shokurov, Smoothness of the generic anticanonical divisor on Fano varieties, Izv. AN SSSR, ser. mat. 43 (1979), 430-441 (in Russian). Zbl0407.14017MR534602
  45. [Sh2] V.V. Shokurov, Existence of lines on Fano varieties, Izv. AN SSSR, ser. mat. 43 (1979), 922-964 (in Russian). Zbl0422.14019MR548510
  46. [Te] B. Tennison, On the quartic threefold, Proc. Lond. Math. Soc.29 (1974), 714-734. Zbl0308.14005MR419453
  47. [Ti] A.S. Tikhomirov, The intermediate Jacobian of a double solid ramified at a quartic, Izv AN SSSR, ser. mat.44 (1980), 1329-1377 (in Russian). Zbl0455.14025MR603580
  48. [Tyu1] A.N. Tyurin, Five lectures on threefolds, Uspekhi27 (1972), 3-50 (in Russian). MR412196
  49. [Tyu2] A.N. Tyurin, On the intersections of quadrics, Uspekhi30 (1975), 51-99 (in Russian). Zbl0339.14020MR424833
  50. [Tyu3] A.N. Tyurin, Intermediate Jacobians in the theory of threefolds, in: VINITI, Sovr. Prob. Mat.12 (1979), 5-57 (in Russian). Zbl0415.14023
  51. [Tyu4] A.N. Tyurin, Geometry of the Fano surface of a smooth cubic F c P4 and Torelli theorems for Fano surfaces and cubics, Izv. AN SSSR, ser. mat. 35 (1971), 498-529 (in Russian). Zbl0252.14004MR285539
  52. [VoK1] V.E. Voskresenskii and A.A. Klyachko, Toroidal Fano varieties and root systems, Izv. AN SSSR, ser. mat. 48 (1984) (in Russian); Math. USSR Izvestiya24 (1985), 221-243 (in translation). Zbl0572.14029
  53. [WaWa] K. Watanabe and M. Watanabe, The classification of Fano 3-folds with torus embeddings, Tokyo J. Math.5 (1982), 37-48. Zbl0581.14028MR670903
  54. [We1] G. Welters, Abel-Jacobi isogenies for certain types of Fano threefolds, Math. Centrum Amsterdam, 1981. Zbl0474.14028MR633157
  55. [We2] G. Welters, The Fano surface of lines on a double P3 with 4th order discriminant locus, Part 1, 1979 (Utrecht Univ. preprint). MR857677
  56. [Wi] P.M.H. Wilson, Fano fourfolds of index greater than one, Journ. reine angew. Math. (Crelle) 379 (1987), 172-181. Zbl0611.14034MR903639

NotesEmbed ?


You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.


Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.