Notes on the arithmetic of Fano threefolds

Yu I. Manin

Compositio Mathematica (1993)

  • Volume: 85, Issue: 1, page 37-55
  • ISSN: 0010-437X

How to cite

top

Manin, Yu I.. "Notes on the arithmetic of Fano threefolds." Compositio Mathematica 85.1 (1993): 37-55. <http://eudml.org/doc/90190>.

@article{Manin1993,
author = {Manin, Yu I.},
journal = {Compositio Mathematica},
keywords = {points of bounded height; Fano threefold; arithmetic stratification},
language = {eng},
number = {1},
pages = {37-55},
publisher = {Kluwer Academic Publishers},
title = {Notes on the arithmetic of Fano threefolds},
url = {http://eudml.org/doc/90190},
volume = {85},
year = {1993},
}

TY - JOUR
AU - Manin, Yu I.
TI - Notes on the arithmetic of Fano threefolds
JO - Compositio Mathematica
PY - 1993
PB - Kluwer Academic Publishers
VL - 85
IS - 1
SP - 37
EP - 55
LA - eng
KW - points of bounded height; Fano threefold; arithmetic stratification
UR - http://eudml.org/doc/90190
ER -

References

top
  1. [AltK1] A.B. Altman and S.I. Kleiman, Foundations of the theory of Fano schemes, Comp. Math.34(1977), 3-47. Zbl0414.14024MR569043
  2. [Ba] V.V. Batyrev, Toroidal Fano threefolds, Math. USSR Izv.19 (1982), 13-25. Zbl0495.14027
  3. [BaMa] V.V. Batyrev and Yu. I. Manin, Sur le nombre des points rationnels de hauteur borné des variétés algébriques, Math. Annalen Bd.286 (1990), 27-43. Zbl0679.14008MR1032922
  4. [BarVe] W. Barth and A. van de Ven, Fano varieties of lines on hypersurfaces, Arch. Math.31 (1978), 96-104. Zbl0383.14003MR510081
  5. [Beau] A. Beauville, Variétés de Prym et jacobiennes intermédiaires, Ann. Sci. ENS10 (1977), 304-392. Zbl0368.14018MR472843
  6. [BlMu] S. Bloch and J.P. Murre, On the Chow group of certain types of Fano threefolds, Comp. Math.39 (1979), 47-105. Zbl0426.14018MR539001
  7. [BoSp] A. Borel and T.A. Springer, Rationality properties of linear algebraic groups, in: Algebraic groups and discontinuous subgroups, Proc. Symp. Pure Math., vol. 9, 26-32, Providence RI, 1980. Zbl0199.06804MR205998
  8. [BoVe] L.P. Botta and A. Verra, The non-rationality of the generic Enriques threefold, Comp. Math.48 (1983), 167-184. Zbl0508.14032MR700002
  9. [CeVe] G. Ceresa and A. Verra, The Abel-Jacobi isomorphism for the sextic double solid, Pacific J. of Math.124 (1986), 85-105. Zbl0593.14026MR850668
  10. [Cl] C.H. Clemens, Double solids, Adv. Math.47 (1983), 107-230. Zbl0509.14045MR690465
  11. [ClCoMo] H. Clemens, J. Kollár and S. Mori, Higher dimensional complex geometry, Astérisque 166 (1988). Zbl0689.14016MR1004926
  12. [ClGr] H. Clemens and Ph.Griffiths, The intermediate Jacobian of the cubic threefold, Ann. of Math.95 (1982), 281-356. Zbl0214.48302MR302652
  13. [Co] A. Collino, Lines on quartic threefolds, J. Lond. Math. Soc. ser.2, 19 (1979), 257-267. Zbl0432.14024MR533324
  14. [CoMuWe] A. Collino, J.P. Murre and G. Welters, On the family of conics lying on a quartic threefold, Rend. Sem. Mat. Univers. Polit. Torino38 (1980), 151-181. Zbl0474.14023MR608936
  15. [Dem1] M. Demazure, A very simple proof of Bott's theorem, Inv. Math.33 (1976), 271-272. Zbl0383.14017MR414569
  16. [Dem2] M. Demazure, Automorphismes et déformations des variétés de Borel, Inv. Math.39 (1977), 179-186. Zbl0406.14030MR435092
  17. [Do] R. Donagi, Group law on the intersection of two quadrics, Ann. Scuola Norm. Sup. di PisaVII (1980), 217-239. Zbl0457.14023MR581142
  18. [FraMaTschi] J. Franke, Yu. I. Manin and Yu. Tschinkel, Rational points of bounded height on Fano varieties, Inv. Math.95 (1989), 421-435. Zbl0674.14012MR974910
  19. [Fu] T. Fujita, On the structure of polarized manifolds with total deficiency one, J. Math. Soc. Japan. I, 32 (1980); II, 33 (1981), 415-434; III, 36 (1984), 75-89. Zbl0541.14036
  20. [Gu1] N.P. Gushel, On Fano varieties of genus 6, Izv. AN SSSR, ser. mat. 46 (1982), 1159-1174 (in Russian). Zbl0554.14014MR682488
  21. [Gu2] N.P. Gushel, On Fano varieties of genus 8, Uspekhi38 (1983), 163-164 (in Russian). Zbl0524.14032MR693729
  22. [Is1] V.A. Iskovskih, Fano threefolds, I, II, Izv. AN SSSR41 (1977), 516-562; 42 (1978), 504-549 (in Russian). Zbl0407.14016MR463151
  23. [Is2] V.A. Iskovskih, Anticanonical models of three-dimensional algebraic varieties, VINITI, Sovr. Probl. Mat.12 (1979), 159-236 (in Russian); J. Sov. Math.13, no. 6 (1980), 745-814 (in translation). Zbl0428.14016MR537685
  24. [Is3] V.A. Iskovskih, Birational automorphisms of three-dimensional algebraic varieties, ibid. 159-236 (in Russian); ibid. 815-868 (in translation). Zbl0428.14017MR537686
  25. [Is4] V.A. Iskovskih, Lectures on algebraic threefolds, Fano threefolds, Moscow University, 1988 (in Russian). 
  26. [Le] M. Letizia, The Abel-Jacobi mapping for the quartic threefold, Inv. Math.75 (1984), 477-492. Zbl0571.14022MR735337
  27. [Ma] Yu. I. Manin, Cubic Forms, 2nd ed., North-Holland, Amsterdam, 1986. Zbl0582.14010MR833513
  28. [Mar] D.G. Markushevich, Numerical invariants of line families on certain Fano varieties, Mat. Sbornik116 (1981), 265-288 (in Russian). Zbl0492.14026MR637865
  29. [Mar-Des] M. Martin-Deschamps, Propriétés de descente des variétés à fibre cotangent ample, Ann. Inst. Fourier33 (1984), 39-64. Zbl0535.14013MR762693
  30. [MaTschi] Yu. I. Manin and Yu. Tschinkel, Points of bounded height on del Pezzo surfaces, 1991 (preprint). Zbl0782.14033
  31. [Me] J.Y. Merindol, Théorème de Torelli affine pour les intersections de deux quadriques, Inv. Math.80 (1985), 375-416. Zbl0554.14002MR791666
  32. [Mu] J.P. Murre, Classification of Fano threefolds according to Fano and Iskovskih, in: Algebraic threefolds, Proceedings, Varenna 1981Lect. N. Math. 947, Springer-Verlag (1982), 35-92. Zbl0492.14025MR672614
  33. [MoMu1] Sh. Mori and Sh. Mukai, Classification of Fano 3-folds with B2 ≽ 2, Manuscripta Math. 36, no. 2 (1981), 147-162. Zbl0478.14033
  34. [MoMu2] Sh. Mori and Sh. Mukai, On Fano threefolds with B2 ≽ 2, in: Advanced Studies in Pure Math. 1 (1983), Algebraic Varieties and Analytic Varieties, p. 101-129, Kinokuniya, Amsterdam-Tokyo, 1985. Zbl0537.14026
  35. [MoMu3] Sh. Mori and Sh. Mukai, Classification of Fano 3-folds with B2 ≽ 2, in: Algebraic and Topological Theories, Kinokuniya, Amsterdam-Tokyo, 1985, 496-548. Zbl0800.14021
  36. [Na] A.M. Nadel, The boundedness of degree of Fano varieties with Picard number one, 1990 (preprint MIT). Zbl0754.14026MR1115788
  37. [New] P.E. Newstead, Stable bundles of rank 2 and odd degree over a curve of genus 2, Topology7 (1968), 205-215. Zbl0174.52901MR237500
  38. [Pu1] A.V. Pukhlikov, Birational automorphisms of a three-dimensional quartic with the simplest singularity, Mat. Sbornik135 (1988), 472-496 (in Russian). Zbl0655.14006MR942134
  39. [Pu2] A.V. Pukhlikov, Birational automorphisms of a double space and double quadric, Izv. AN SSSR, ser. mat. 52 (1988), 229-239 (in Russian). Zbl0704.14008MR936532
  40. [Re1] M. Reid, The complete intersection of two or more quadrics, Ph.D. These, Cambridge Univ., 1972. 
  41. [Re2] M. Reid, Lines on Fano threefolds according to Shokurov, Inst. Mittag Loeffler Rep.11 (1980), 1-41. 
  42. [Se1] J.-P. Serre, Lectures on the Mordell-Weil theorem, Vieweg, Braunschweig-Wiesbaden, 1989. Zbl0676.14005MR1002324
  43. [Se2] J.-P. Serre, Comptes Rendus, 1990. 
  44. [Sh1] V.V. Shokurov, Smoothness of the generic anticanonical divisor on Fano varieties, Izv. AN SSSR, ser. mat. 43 (1979), 430-441 (in Russian). Zbl0407.14017MR534602
  45. [Sh2] V.V. Shokurov, Existence of lines on Fano varieties, Izv. AN SSSR, ser. mat. 43 (1979), 922-964 (in Russian). Zbl0422.14019MR548510
  46. [Te] B. Tennison, On the quartic threefold, Proc. Lond. Math. Soc.29 (1974), 714-734. Zbl0308.14005MR419453
  47. [Ti] A.S. Tikhomirov, The intermediate Jacobian of a double solid ramified at a quartic, Izv AN SSSR, ser. mat.44 (1980), 1329-1377 (in Russian). Zbl0455.14025MR603580
  48. [Tyu1] A.N. Tyurin, Five lectures on threefolds, Uspekhi27 (1972), 3-50 (in Russian). MR412196
  49. [Tyu2] A.N. Tyurin, On the intersections of quadrics, Uspekhi30 (1975), 51-99 (in Russian). Zbl0339.14020MR424833
  50. [Tyu3] A.N. Tyurin, Intermediate Jacobians in the theory of threefolds, in: VINITI, Sovr. Prob. Mat.12 (1979), 5-57 (in Russian). Zbl0415.14023
  51. [Tyu4] A.N. Tyurin, Geometry of the Fano surface of a smooth cubic F c P4 and Torelli theorems for Fano surfaces and cubics, Izv. AN SSSR, ser. mat. 35 (1971), 498-529 (in Russian). Zbl0252.14004MR285539
  52. [VoK1] V.E. Voskresenskii and A.A. Klyachko, Toroidal Fano varieties and root systems, Izv. AN SSSR, ser. mat. 48 (1984) (in Russian); Math. USSR Izvestiya24 (1985), 221-243 (in translation). Zbl0572.14029
  53. [WaWa] K. Watanabe and M. Watanabe, The classification of Fano 3-folds with torus embeddings, Tokyo J. Math.5 (1982), 37-48. Zbl0581.14028MR670903
  54. [We1] G. Welters, Abel-Jacobi isogenies for certain types of Fano threefolds, Math. Centrum Amsterdam, 1981. Zbl0474.14028MR633157
  55. [We2] G. Welters, The Fano surface of lines on a double P3 with 4th order discriminant locus, Part 1, 1979 (Utrecht Univ. preprint). MR857677
  56. [Wi] P.M.H. Wilson, Fano fourfolds of index greater than one, Journ. reine angew. Math. (Crelle) 379 (1987), 172-181. Zbl0611.14034MR903639

NotesEmbed ?

top

You must be logged in to post comments.