Rational points and fundamental groups: applications of the p -adic cohomology

Antoine Chambert-loir

Séminaire Bourbaki (2002-2003)

  • Volume: 45, page 125-146
  • ISSN: 0303-1179

Abstract

top
I present results due to T. Ekedahl and H. Esnault concerning smooth projective varieties adefined over a field of positive characteristic, say  p , two points of which can be linked by a chain of rational curves. Examples are given by weakly unirational, or Fano varieties. Notably: 1) over a finite field, such varieties have a rational point, this generalizes the Chevalley-Warning Theorem; 2) over an algebraically closed field, the fundamental group of such varieties is finite and its order is prime to  p ; 3) over a finite field of cardinality  q , the number of rational points of two proper smooth varieties that are birational are congruent mod.  q . The proofs use the p -adic rigid cohomology defined by P. Berthelot.

How to cite

top

Chambert-loir, Antoine. "Points rationnels et groupes fondamentaux : applications de la cohomologie $p$-adique." Séminaire Bourbaki 45 (2002-2003): 125-146. <http://eudml.org/doc/252128>.

@article{Chambert2002-2003,
abstract = {Je présenterai des résultats de T. Ekedahl et H. Esnault sur les variétés projectives lisses sur un corps de caractéristique strictement positive, disons $p$, dont deux points peuvent être liés par une chaîne de courbes rationnelles, par exemple faiblement unirationnelles, ou de Fano. Notamment : 1) sur un corps fini, de telles variétés ont un point rationnel, résultat qui généralise le théorème de Chevalley-Warning ; 2) sur un corps algébriquement clos, de telles variétés ont un groupe fondamental fini d’ordre premier à $p$ ; 3) sur un corps fini de cardinal $q$, deux variétés propres et lisses qui sont birationnelles ont même nombre de points rationnels modulo $q$. Les démonstrations utilisent la cohomologie rigide, $p$-adique, de P. Berthelot.},
author = {Chambert-loir, Antoine},
journal = {Séminaire Bourbaki},
keywords = {Fano varieties; chain rationaly connected varieties; rational points; fundamental group; rigid cohomology; slopes},
language = {fre},
pages = {125-146},
publisher = {Association des amis de Nicolas Bourbaki, Société mathématique de France},
title = {Points rationnels et groupes fondamentaux : applications de la cohomologie $p$-adique},
url = {http://eudml.org/doc/252128},
volume = {45},
year = {2002-2003},
}

TY - JOUR
AU - Chambert-loir, Antoine
TI - Points rationnels et groupes fondamentaux : applications de la cohomologie $p$-adique
JO - Séminaire Bourbaki
PY - 2002-2003
PB - Association des amis de Nicolas Bourbaki, Société mathématique de France
VL - 45
SP - 125
EP - 146
AB - Je présenterai des résultats de T. Ekedahl et H. Esnault sur les variétés projectives lisses sur un corps de caractéristique strictement positive, disons $p$, dont deux points peuvent être liés par une chaîne de courbes rationnelles, par exemple faiblement unirationnelles, ou de Fano. Notamment : 1) sur un corps fini, de telles variétés ont un point rationnel, résultat qui généralise le théorème de Chevalley-Warning ; 2) sur un corps algébriquement clos, de telles variétés ont un groupe fondamental fini d’ordre premier à $p$ ; 3) sur un corps fini de cardinal $q$, deux variétés propres et lisses qui sont birationnelles ont même nombre de points rationnels modulo $q$. Les démonstrations utilisent la cohomologie rigide, $p$-adique, de P. Berthelot.
LA - fre
KW - Fano varieties; chain rationaly connected varieties; rational points; fundamental group; rigid cohomology; slopes
UR - http://eudml.org/doc/252128
ER -

References

top
  1. [1] J. Ax – “Zeroes of polynomials over finite fields”, Amer. J. Math.86 (1964), p. 255–261. Zbl0121.02003MR160775
  2. [2] P. Berthelot – Cohomologie cristalline des schémas de caractéristique p g t ; 0 , Lecture Notes in Math., vol. 407, Springer Verlag, 1974. Zbl0298.14012MR384804
  3. [3] —, “Géométrie rigide et cohomologie des variétés algébriques de caractéristique p ”, in Introductions aux cohomologies p -adiques (Luminy, 1984), Mém. Soc. Math. France, vol. 23, 1986, p. 7–32. MR865810
  4. [4] —, “Cohomologie rigide et cohomologie rigide à supports propres. Première partie”, Prépublication, IRMAR, Université Rennes 1, 1996. 
  5. [5] —, “Dualité de Poincaré et formule de Künneth en cohomologie rigide”, C. R. Acad. Sci. Paris Sér. I Math. 325 (1997), no. 5, p. 493–498. Zbl0908.14006MR1692313
  6. [6] —, “Finitude et pureté cohomologique en cohomologie rigide”, Invent. Math. 128 (1997), no. 2, p. 329–377, Avec un appendice en anglais par A.J. de Jong. Zbl0908.14005MR1440308
  7. [7] P. Berthelot & A. Ogus – Notes on crystalline cohomology, Math. Notes, vol. 21, Princeton Univ. Press, 1978. Zbl0383.14010MR491705
  8. [8] S. Bloch – Lectures on algebraic cycles, Duke University Mathematics Series, IV, Duke University Mathematics Department, Durham, N.C., 1980. Zbl1201.14006MR558224
  9. [9] —, “On an argument of Mumford in the theory of algebraic cycles”, in Journées de Géometrie Algébrique d’Angers, Juillet 1979/Algebraic Geometry, Angers, 1979, Sijthoff & Noordhoff, Alphen aan den Rijn, 1980, p. 217–221. Zbl0508.14004MR605343
  10. [10] S. Bloch, H. Esnault & M. Levine – “Decomposition of the diagonal and eigenvalues of Frobenius for Fano hypersurfaces”, 2003, arXiv:math.AG/0302109. Zbl1087.14017MR2115665
  11. [11] S. Bloch, A. Kas & D.I. Lieberman – “Zero cycles on surfaces with p g = 0 ”, Compositio Math. 33 (1976), no. 2, p. 135–145. Zbl0337.14006MR435073
  12. [12] E. Bombieri – “On exponential sums in finite fields. II”, Invent. Math. 47 (1978), no. 1, p. 29–39. Zbl0396.14001MR506272
  13. [13] F. Campana – “Remarques sur les groupes de Kähler nilpotents”, Ann. Sci. École Norm. Sup.28 (1995), p. 307–316. Zbl0829.32006MR1326670
  14. [14] A. Chambert-Loir – “À propos du groupe fondamental des variétés rationnellement connexes par chaînes”, 2003, arXiv:math.AG/0303051. MR2932435
  15. [15] B. Chiarellotto – “Weights in rigid cohomology applications to unipotent F -isocrystals”, Ann. Sci. École Norm. Sup. 31 (1998), no. 5, p. 683–715. Zbl0933.14008MR1643966
  16. [16] B. Chiarellotto & B. Le Stum – “ F -isocristaux unipotents”, Compositio Math. 116 (1999), no. 1, p. 81–110. Zbl0936.14017MR1669440
  17. [17] —, “Pentes en cohomologie rigide et F -isocristaux unipotents”, Manuscripta Math. 100 (1999), no. 4, p. 455–468. Zbl0980.14016MR1734795
  18. [18] J.-L. Colliot-Thélène & D.A. Madore – “Surfaces de Del Pezzo sans point rationnel sur un corps de dimension cohomologique un”, 2003. Zbl1056.14030MR2036596
  19. [19] R.M. Crew – “Etale p -covers in characteristic p ”, Compositio Math. 52 (1984), no. 1, p. 31–45. Zbl0558.14009MR742696
  20. [20] O. Debarre – Higher-dimensional algebraic geometry, Universitext, Springer-Verlag, New York, 2001. Zbl0978.14001MR1841091
  21. [21] —, “Variétés rationnellement connexes”, in Séminaire Bourbaki, Vol. 2001/02, Astérisque, Soc. Math. France, Paris, 2004, exposé 905, p. 243–266. 
  22. [22] P. Deligne – “Théorie de Hodge II”, Publ. Math. Inst. Hautes Études Sci.40 (1972), p. 5–57. Zbl0219.14007MR498551
  23. [23] —, “La conjecture de Weil, I”, Publ. Math. Inst. Hautes Études Sci.43 (1974), p. 273–307. Zbl0287.14001MR340258
  24. [24] B. Dwork – “On the rationality of the zeta function of an algebraic variety”, Amer. J. Math.82 (1960), p. 631–648. Zbl0173.48501MR140494
  25. [25] T. Ekedahl – “Sur le groupe fondamental d’une variété unirationnelle”, C. R. Acad. Sci. Paris Sér. I Math. 297 (1983), no. 12, p. 627–629. Zbl0591.14010MR735130
  26. [26] H. Esnault – “Varieties over a finite field with trivial Chow group of 0 -cycles have a rational point”, Invent. Math. 151 (2003), no. 1, p. 187–191, arXiv:math.AG/0207022. Zbl1092.14010MR1943746
  27. [27] J.-Y. Étesse & B. Le Stum – “Fonctions L associées aux F -isocristaux surconvergents. I. Interprétation cohomologique”, Math. Ann. 296 (1993), no. 3, p. 557–576. Zbl0789.14015MR1225991
  28. [28] —, “Fonctions L associées aux F -isocristaux surconvergents. II. Zéros et pôles unités”, Invent. Math. 127 (1997), no. 1, p. 1–31. Zbl0911.14011MR1423023
  29. [29] J.-M. Fontaine & W. Messing – “ p -adic periods and p -adic étale cohomology”, in Arithmetic geometry (Arcata, 1985), Contemporary mathematics, vol. 67, Amer. Math. Soc., 1987, p. 179–207. Zbl0632.14016MR902593
  30. [30] T. Graber, J. Harris & J. Starr – “Families of rationally connected varieties”, J. Amer. Math. Soc. 16 (2003), no. 1, p. 57–67. Zbl1092.14063MR1937199
  31. [31] E. Grosse-Klönne – “Finiteness of de Rham cohomology in rigid analysis”, Duke Math. J. 113 (2002), no. 1, p. 57–91. Zbl1057.14023MR1905392
  32. [32] A. Grothendieck – “Crystals and the de Rham cohomology of schemes”, in Dix exposés sur la cohomologie des schémas [34], p. 306–358. Zbl0215.37102MR269663
  33. [33] A. Grothendieck, P. Deligne & N.M. Katz – Groupes de monodromie en géométrie algébrique, Lecture Notes in Math., no. 288-340, Springer Verlag, 1972-73, SGA 7. 
  34. [34] A. Grothendieck et al. – Dix exposés sur la cohomologie des schémas, Adv. Stud. in pure Math., North-Holland, 1968. Zbl0192.57801
  35. [35] R. Hartshorne – “On the De Rham cohomology of algebraic varieties”, Publ. Math. Inst. Hautes Études Sci.45 (1975), p. 5–99. Zbl0326.14004MR432647
  36. [36] L. Illusie – “Complexe de de Rham–Witt et cohomologie cristalline”, Ann. Sci. École Norm. Sup.12 (1979), p. 501–661. Zbl0436.14007MR565469
  37. [37] A.J. de Jong – “Smoothness, semistability and alterations”, Publ. Math. Inst. Hautes Études Sci.83 (1996), p. 51–93. Zbl0916.14005
  38. [38] A.J. de Jong & J. Starr – “Every rationally connected variety over the function field of a curve has a rational point”, 2002, http://www-math.mit.edu/~dejong/papers/familyofcurves3.dvi. Zbl1063.14025
  39. [39] B. Kahn – “Number of points of function fields over finite fields”, 2002, arXiv:math.NT/0210202. 
  40. [40] N.M. Katz – “On a theorem of Ax”, Amer. J. Math.93 (1971), p. 485–499. Zbl0237.12012MR288099
  41. [41] —, “Le niveau de la cohomologie des intersections complètes”, in Groupes de monodromie en géométrie algébrique [33], SGA 7, p. 363–399. 
  42. [42] —, “Slope filtration of F-crystals”, in Journées de Géométrie algébrique de Rennes, Astérisque, vol. 63, Soc. Math. France, Paris, 1979, p. 113–164. Zbl0426.14007MR563463
  43. [43] N.M. Katz & W. Messing – “Some consequences of the Riemann hypothesis for varieties over finite fields”, Invent. Math.23 (1974), p. 73–77. Zbl0275.14011MR332791
  44. [44] K.S. Kedlaya – “Counting points on hyperelliptic curves using Monsky-Washnitzer cohomology”, J. Ramanujan Math. Soc. 16 (2001), no. 4, p. 323–338. Zbl1066.14024MR1877805
  45. [45] —, “Finiteness of rigid cohomology with coefficients”, 2002, arXiv:math.AG/0208027. Zbl1133.14019
  46. [46] —, “Fourier transforms and p -adic Weil II”, 2002, arXiv:math.NT/0210149. 
  47. [47] M. Kim – “A vanishing theorem for Fano varieties in positive characteristic”, 2002, arXiv:math.AG/0201183. 
  48. [48] S. Kleiman – “Algebraic cycles and the Weil conjectures”, in Dix exposés sur la cohomologie des schémas [34], p. 359–386. Zbl0198.25902MR292838
  49. [49] J. Kollár – “Shafarevich maps and plurigenera of algebraic varieties”, Invent. Math.113 (1993), p. 177–216. Zbl0819.14006MR1223229
  50. [50] G. Lachaud & M. Perret – “Un invariant birationnel des variétés de dimension 3 sur un corps fini”, J. Algebraic Geometry 9 (2000), no. 3, p. 451–458. Zbl0970.14014MR1752011
  51. [51] A.G.B. Lauder & D.Q. Wan – “Computing zeta functions of Artin-Schreier curves over finite fields”, LMS J. Comput. Math. 5 (2002), p. 34–55 (electronic). Zbl1067.11078MR1916921
  52. [52] Yu.I. Manin – “The theory of commutative formal groups over fields of finite characteristic”, Russian Math. Surveys18 (1963), p. 1–80. Zbl0128.15603MR157972
  53. [53] —, “Notes on the arithmetic of Fano threefolds”, Compositio Math. 85 (1993), no. 1, p. 37–55. Zbl0780.14022MR1199203
  54. [54] B. Mazur – “Frobenius and the Hodge filtration”, Bull. Amer. Math. Soc.78 (1972), p. 653–667. Zbl0258.14006MR330169
  55. [55] —, “Frobenius and the Hodge filtration (estimates)”, Ann. of Math.98 (1973), p. 58–95. Zbl0261.14005MR321932
  56. [56] Z. Mebkhout – “Sur le théorème de finitude de la cohomologie p -adique d’une variété affine non singulière”, Amer. J. Math. 119 (1997), no. 5, p. 1027–1081. Zbl0926.14007MR1473068
  57. [57] J.S. Milne – “Zero cycles on algebraic varieties in nonzero characteristic : Roĭtman’s theorem”, Compositio Math. 47 (1982), no. 3, p. 271–287. Zbl0506.14006MR681610
  58. [58] P. Monsky & G. Washnitzer – “Formal cohomology I”, Ann. of Math.88 (1968), p. 181–217. Zbl0162.52504MR248141
  59. [59] O. Moreno & C.J. Moreno – “Improvements of the Chevalley-Warning and the Ax-Katz theorems”, Amer. J. Math. 117 (1995), no. 1, p. 241–244. Zbl0824.11017MR1314464
  60. [60] N. Nygaard – “On the fundamental group of a unirational 3 -fold”, Invent. Math. 44 (1978), no. 1, p. 75–86. Zbl0427.14014MR491731
  61. [61] D. Petrequin – “Classes de Chern et classes de cycles en cohomologie rigide”, Bull. Soc. Math. France131 (2003), p. 59–121. Zbl1083.14505MR1975806
  62. [62] A.A. Roĭtman – “The torsion of the group of 0 -cycles modulo rational equivalence”, Ann. of Math. 111 (1980), no. 3, p. 553–569. Zbl0504.14006MR577137
  63. [63] T. Satoh – “The canonical lift of an ordinary elliptic curve over a finite field and its point counting”, J. Ramanujan Math. Soc. 15 (2000), no. 4, p. 247–270. Zbl1009.11051MR1801221
  64. [64] J.-P. Serre – “On the fundamental group of a unirational variety”, J. London Math. Soc.34 (1959), p. 481–484. Zbl0097.36301MR109155
  65. [65] N.I. Shepherd-Barron – “Fano threefolds in positive characteristic”, Compositio Math. 105 (1997), no. 3, p. 237–265. Zbl0889.14021MR1440723
  66. [66] T. Shioda – “An example of unirational surface in characteristic p ”, Math. Ann.211 (1974), p. 233–236. Zbl0276.14018MR374149
  67. [67] N. Tsuzuki – “Cohomological descent of rigid cohomology for proper coverings”, Invent. Math. 151 (2003), no. 1, p. 101–133. Zbl1085.14019MR1943743
  68. [68] D.Q. Wan – “A Chevalley-Warning approach to p -adic estimates of character sums”, Proc. Amer. Math. Soc. 123 (1995), no. 1, p. 45–54. Zbl0821.11062MR1215208
  69. [69] E. Warning – “Bemerkung zur vorstehenden Arbeit von Herr Chevalley”, Abh. Math. Sem. Univ. Hamburg11 (1936), p. 76–83. Zbl0011.14601JFM61.1043.02
  70. [70] A. Weil – “Number of solutions of equations in finite fields”, Bull. Amer. Math. Soc.55 (1949), p. 397–508. Zbl0032.39402MR29393

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.