On a model of rotating superfluids

Sylvia Serfaty

ESAIM: Control, Optimisation and Calculus of Variations (2001)

  • Volume: 6, page 201-238
  • ISSN: 1292-8119

Abstract

top
We consider an energy-functional describing rotating superfluids at a rotating velocity ω , and prove similar results as for the Ginzburg-Landau functional of superconductivity: mainly the existence of branches of solutions with vortices, the existence of a critical ω above which energy-minimizers have vortices, evaluations of the minimal energy as a function of ω , and the derivation of a limiting free-boundary problem.

How to cite

top

Serfaty, Sylvia. "On a model of rotating superfluids." ESAIM: Control, Optimisation and Calculus of Variations 6 (2001): 201-238. <http://eudml.org/doc/90590>.

@article{Serfaty2001,
abstract = {We consider an energy-functional describing rotating superfluids at a rotating velocity $\omega $, and prove similar results as for the Ginzburg-Landau functional of superconductivity: mainly the existence of branches of solutions with vortices, the existence of a critical $\omega $ above which energy-minimizers have vortices, evaluations of the minimal energy as a function of $\omega $, and the derivation of a limiting free-boundary problem.},
author = {Serfaty, Sylvia},
journal = {ESAIM: Control, Optimisation and Calculus of Variations},
keywords = {vortices; Gross-Pitaevskii equations; superfluids; Gross-Pitaevskij equation; energy functional; rotating superfluids},
language = {eng},
pages = {201-238},
publisher = {EDP-Sciences},
title = {On a model of rotating superfluids},
url = {http://eudml.org/doc/90590},
volume = {6},
year = {2001},
}

TY - JOUR
AU - Serfaty, Sylvia
TI - On a model of rotating superfluids
JO - ESAIM: Control, Optimisation and Calculus of Variations
PY - 2001
PB - EDP-Sciences
VL - 6
SP - 201
EP - 238
AB - We consider an energy-functional describing rotating superfluids at a rotating velocity $\omega $, and prove similar results as for the Ginzburg-Landau functional of superconductivity: mainly the existence of branches of solutions with vortices, the existence of a critical $\omega $ above which energy-minimizers have vortices, evaluations of the minimal energy as a function of $\omega $, and the derivation of a limiting free-boundary problem.
LA - eng
KW - vortices; Gross-Pitaevskii equations; superfluids; Gross-Pitaevskij equation; energy functional; rotating superfluids
UR - http://eudml.org/doc/90590
ER -

References

top
  1. [1] L. Almeida and F. Bethuel, Topological Methods for the Ginzburg-Landau Equations. J. Math. Pures Appl. 77 (1998) 1–49. Zbl0904.35023
  2. [2] A. Aftalion (in preparation.) 
  3. [3] A. Aftalion, E. Sandier and S. Serfaty, Pinning Phenomena in the Ginzburg-Landau Model of Superconductivity. J. Math. Pures Appl. (to appear). Zbl1027.35123MR1826348
  4. [4] N. André and I. Shafrir, Minimization of a Ginzburg-Landau type functional with nonvanishing Dirichlet boundary condition. Calc. Var. Partial Differential Equations (1998) 1–27. Zbl0910.49001
  5. [5] F. Bethuel, H. Brezis and F. Hélein, Ginzburg-Landau Vortices. Birkhäuser (1994). Zbl0802.35142MR1269538
  6. [6] A. Bonnet and R. Monneau, Distribution of vortices in a type-II superconductor as a free boundary problem: Existence and regularity via Nash-Moser theory. Interfaces Free Bound. 2 (2000) 181–200. Zbl0989.35146
  7. [7] H. Brezis and L. Oswald, Remarks on sublinear elliptic equations. Nonlinear Anal. 10 (1986) 55–64. Zbl0593.35045
  8. [8] D.A. Butts and D.S. Rokhsar, Predicted signatures of rotating Bose-Einstein condensates. Nature 397 (1999) 327–329. 
  9. [9] Y. Castin and R. Dum, Bose-Einstein condensates with vortices in rotating traps. Eur. Phys. J. D 7 (1999) 399–412. 
  10. [10] A. Fetter, Vortices and Ions in Helium, in The physics of liquid and solid helium, part I, edited by K.H. Bennemann and J.B. Keterson. John Wiley, Interscience, Interscience Monographs and Texts in Physics and Astronomy 30 (1976). 
  11. [11] S. Gueron and I. Shafrir, On a Discrete Variational Problem Involving Interacting Particles. SIAM J. Appl. Math. 60 (2000) 1–17. Zbl0962.49025
  12. [12] D. Kinderlehrer and G. Stampacchia, An introduction to variational inequalities and their applications. Acad. Press (1980). Zbl0457.35001MR567696
  13. [13] L. Lassoued and P. Mironescu, Ginzburg-Landau type energy with discontinuous constraint. J. Anal. Math. 77 (1999) 1–26. Zbl0930.35073
  14. [14] N. Owen, J. Rubinstein and P. Sternberg, Minimizers and gradient flows for singularly perturbed bi-stable potentials with a Dirichlet condition. Proc. Roy. Soc. London Ser. A 429 (1990) 503–532. Zbl0722.49021
  15. [15] J.F. Rodrigues, Obstacle Problems in Mathematical Physics. Mathematical Studies, North Holland (1987). Zbl0606.73017MR880369
  16. [16] S. Serfaty, Local Minimizers for the Ginzburg-Landau Energy near Critical Magnetic Field, Part I. Comm. Contemporary Math. 1 (1999) 213–254. Zbl0944.49007
  17. [17] S. Serfaty, Local Minimizers for the Ginzburg-Landau Energy near Critical Magnetic Field, Part II. Comm. Contemporary Math. 1 (1999) 295–333. Zbl0964.49005
  18. [18] S. Serfaty, Stable Configurations in Superconductivity: Uniqueness, Multiplicity and Vortex-Nucleation. Arch. Rational Mech. Anal. 149 (1999) 329–365. Zbl0959.35154
  19. [19] S. Serfaty, Sur l’équation de Ginzburg-Landau avec champ magnétique, in Proc. of Journées Équations aux dérivées partielles, Saint-Jean-de-Monts (1998). Zbl1213.58014
  20. [20] E. Sandier and S. Serfaty, Global Minimizers for the Ginzburg-Landau Functional below the First Critical Magnetic Field. Ann. Inst. H. Poincaré Anal. Non Linéaire 17 (2000) 119–145. Zbl0947.49004
  21. [21] E. Sandier and S. Serfaty, On the Energy of Type-II Superconductors in the Mixed Phase. Rev. Math. Phys. (to appear). Zbl0964.49006MR1794239
  22. [22] E. Sandier and S. Serfaty, A Rigorous Derivation of a Free-Boundary Problem Arising in Superconductivity. Annales Sci. École Norm. Sup. (4) 33 (2000) 561–592. Zbl1174.35552
  23. [23] E. Sandier and S. Serfaty, Ginzburg-Landau Minimizers Near the First Critical Field Have Bounded Vorticity. Preprint. Zbl1037.49001MR1979114
  24. [24] D. Tilley and J. Tilley, Superfluidity and Superconductivity, 2nd edition. Adam Hilger Ltd., Bristol (1986). 

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.