Page 1

Displaying 1 – 3 of 3

Showing per page

Hamiltonian principle in the binary mixtures of Euler fluids with applications to the second sound phenomena

Henri Gouin, Tommaso Ruggeri (2003)

Atti della Accademia Nazionale dei Lincei. Classe di Scienze Fisiche, Matematiche e Naturali. Rendiconti Lincei. Matematica e Applicazioni

In the present paper we compare the theory of mixtures based on Rational Thermomechanics with the one obtained by Hamilton principle. We prove that the two theories coincide in the adiabatic case when the action is constructed with the intrinsic Lagrangian. In the complete thermodynamical case we show that we have also coincidence in the case of low temperature when the second sound phenomena arises for superfluid Helium and crystals.

On a model of rotating superfluids

Sylvia Serfaty (2001)

ESAIM: Control, Optimisation and Calculus of Variations

We consider an energy-functional describing rotating superfluids at a rotating velocity ω , and prove similar results as for the Ginzburg-Landau functional of superconductivity: mainly the existence of branches of solutions with vortices, the existence of a critical ω above which energy-minimizers have vortices, evaluations of the minimal energy as a function of ω , and the derivation of a limiting free-boundary problem.

On a model of rotating superfluids

Sylvia Serfaty (2010)

ESAIM: Control, Optimisation and Calculus of Variations

We consider an energy-functional describing rotating superfluids at a rotating velocity ω, and prove similar results as for the Ginzburg-Landau functional of superconductivity: mainly the existence of branches of solutions with vortices, the existence of a critical ω above which energy-minimizers have vortices, evaluations of the minimal energy as a function of ω, and the derivation of a limiting free-boundary problem.

Currently displaying 1 – 3 of 3

Page 1