Half-delocalization of eigenfunctions for the Laplacian on an Anosov manifold

Nalini Anantharaman[1]; Stéphane Nonnenmacher[2]

  • [1] tabacckludge ’Ecole Normale Supérieure Unité de Mathématiques Pures et Appliquées 6, allée d’Italie 69364 LYON Cedex 07 (France)
  • [2] CEA/DSM/PhT Service de Physique Théorique Unité de recherche associé CNRS CEA/Saclay 91191 Gif-sur-Yvette (France)

Annales de l’institut Fourier (2007)

  • Volume: 57, Issue: 7, page 2465-2523
  • ISSN: 0373-0956

Abstract

top
We study the high-energy eigenfunctions of the Laplacian on a compact Riemannian manifold with Anosov geodesic flow. The localization of a semiclassical measure associated with a sequence of eigenfunctions is characterized by the Kolmogorov-Sinai entropy of this measure. We show that this entropy is necessarily bounded from below by a constant which, in the case of constant negative curvature, equals half the maximal entropy. In this sense, high-energy eigenfunctions are at least half-delocalized.

How to cite

top

Anantharaman, Nalini, and Nonnenmacher, Stéphane. "Half-delocalization of eigenfunctions for the Laplacian on an Anosov manifold." Annales de l’institut Fourier 57.7 (2007): 2465-2523. <http://eudml.org/doc/10304>.

@article{Anantharaman2007,
abstract = {We study the high-energy eigenfunctions of the Laplacian on a compact Riemannian manifold with Anosov geodesic flow. The localization of a semiclassical measure associated with a sequence of eigenfunctions is characterized by the Kolmogorov-Sinai entropy of this measure. We show that this entropy is necessarily bounded from below by a constant which, in the case of constant negative curvature, equals half the maximal entropy. In this sense, high-energy eigenfunctions are at least half-delocalized.},
affiliation = {tabacckludge ’Ecole Normale Supérieure Unité de Mathématiques Pures et Appliquées 6, allée d’Italie 69364 LYON Cedex 07 (France); CEA/DSM/PhT Service de Physique Théorique Unité de recherche associé CNRS CEA/Saclay 91191 Gif-sur-Yvette (France)},
author = {Anantharaman, Nalini, Nonnenmacher, Stéphane},
journal = {Annales de l’institut Fourier},
keywords = {Quantum chaos; semiclassical measure; ergodic theory; entropy; Anosov flows; quantum chaos},
language = {eng},
number = {7},
pages = {2465-2523},
publisher = {Association des Annales de l’institut Fourier},
title = {Half-delocalization of eigenfunctions for the Laplacian on an Anosov manifold},
url = {http://eudml.org/doc/10304},
volume = {57},
year = {2007},
}

TY - JOUR
AU - Anantharaman, Nalini
AU - Nonnenmacher, Stéphane
TI - Half-delocalization of eigenfunctions for the Laplacian on an Anosov manifold
JO - Annales de l’institut Fourier
PY - 2007
PB - Association des Annales de l’institut Fourier
VL - 57
IS - 7
SP - 2465
EP - 2523
AB - We study the high-energy eigenfunctions of the Laplacian on a compact Riemannian manifold with Anosov geodesic flow. The localization of a semiclassical measure associated with a sequence of eigenfunctions is characterized by the Kolmogorov-Sinai entropy of this measure. We show that this entropy is necessarily bounded from below by a constant which, in the case of constant negative curvature, equals half the maximal entropy. In this sense, high-energy eigenfunctions are at least half-delocalized.
LA - eng
KW - Quantum chaos; semiclassical measure; ergodic theory; entropy; Anosov flows; quantum chaos
UR - http://eudml.org/doc/10304
ER -

References

top
  1. N. Anantharaman, H. Koch, S. Nonnenmacher, Entropy of eigenfunctions, (2006) Zbl1175.81118
  2. Nalini Anantharaman, Entropy and the localization of eigenfunctions, (2008) Zbl1175.35036
  3. Nalini Anantharaman, Stéphane Nonnenmacher, Entropy of semiclassical measures of the Walsh-quantized baker’s map, Ann. Henri Poincaré 8 (2007), 37-74 Zbl1109.81035
  4. Pierre H. Bérard, On the wave equation on a compact Riemannian manifold without conjugate points, Math. Z. 155 (1977), 249-276 Zbl0341.35052MR455055
  5. M. V. Berry, Regular and irregular semiclassical wavefunctions, J. Phys. A 10 (1977), 2083-2091 Zbl0377.70014MR489542
  6. Oriol Bohigas, Random matrix theories and chaotic dynamics, Chaos et physique quantique (Les Houches, 1989) (1991), 87-199, North-Holland, Amsterdam MR1188418
  7. A. Bouzouina, D. Robert, Uniform semiclassical estimates for the propagation of quantum observables, Duke Math. J. 111 (2002), 223-252 Zbl1069.35061MR1882134
  8. Y. Colin de Verdière, Ergodicité et fonctions propres du laplacien, Comm. Math. Phys. 102 (1985), 497-502 Zbl0592.58050MR818831
  9. Yves Colin de Verdière, Bernard Parisse, Équilibre instable en régime semi-classique. I. Concentration microlocale, Comm. Partial Differential Equations 19 (1994), 1535-1563 Zbl0819.35116MR1294470
  10. Mouez Dimassi, Johannes Sjöstrand, Spectral asymptotics in the semi-classical limit, 268 (1999), Cambridge University Press, Cambridge Zbl0926.35002MR1735654
  11. Harold Donnelly, Quantum unique ergodicity, Proc. Amer. Math. Soc. 131 (2003), 2945-2951 (electronic) Zbl1027.58024MR1974353
  12. Nelson Dunford, Jacob T. Schwartz, Linear operators. I. General theory, (1958), Interscience Publishers, Inc., New York Zbl0084.10402MR117523
  13. L.C. Evans, M.Z worski, Lectures on semiclassical analysis 
  14. Frédéric Faure, Stéphane Nonnenmacher, On the maximal scarring for quantum cat map eigenstates, Comm. Math. Phys. 245 (2004), 201-214 Zbl1071.81044MR2036373
  15. Frédéric Faure, Stéphane Nonnenmacher, Stephan De Bièvre, Scarred eigenstates for quantum cat maps of minimal periods, Comm. Math. Phys. 239 (2003), 449-492 Zbl1033.81024MR2000926
  16. Jacques Hadamard, Le problème de Cauchy et les équations aux dérivées partielles linéaires hyperboliques, (1932), Hermann, Paris Zbl0006.20501
  17. Lars Hörmander, The analysis of linear partial differential operators. I, 256 (1983), Springer-Verlag, Berlin Zbl0521.35001
  18. Anatole Katok, Boris Hasselblatt, Introduction to the modern theory of dynamical systems, 54 (1995), Cambridge University Press, Cambridge Zbl0878.58020MR1326374
  19. D. Kelmer, Arithmetic quantum unique ergodicity for symplectic linear maps of the multidimensional torus Zbl1202.81076
  20. D. Kelmer, Scarring on invariant manifolds for perturbed quantized hyperbolic toral automorphisms Zbl1136.37018
  21. Wilhelm Klingenberg, Riemannian manifolds with geodesic flow of Anosov type, Ann. of Math. (2) 99 (1974), 1-13 Zbl0272.53025MR377980
  22. K. Kraus, Complementary observables and uncertainty relations, Phys. Rev. D (3) 35 (1987), 3070-3075 MR897714
  23. F. Ledrappier, L.-S. Young, The metric entropy of diffeomorphisms. I. Characterization of measures satisfying Pesin’s entropy formula, Ann. of Math. (2) 122 (1985), 509-539 Zbl0605.58028
  24. Elon Lindenstrauss, Invariant measures and arithmetic quantum unique ergodicity, Ann. of Math. (2) 163 (2006), 165-219 Zbl1104.22015MR2195133
  25. Hans Maassen, J. B. M. Uffink, Generalized entropic uncertainty relations, Phys. Rev. Lett. 60 (1988), 1103-1106 MR932170
  26. Stéphane Nonnenmacher, Maciej Zworski, Quantum decay rates in chaotic scattering, (2007) Zbl1226.35061
  27. Zeév Rudnick, Peter Sarnak, The behaviour of eigenstates of arithmetic hyperbolic manifolds, Comm. Math. Phys. 161 (1994), 195-213 Zbl0836.58043MR1266075
  28. Johannes Sjöstrand, Maciej Zworski, Asymptotic distribution of resonances for convex obstacles, Acta Math. 183 (1999), 191-253 Zbl0989.35099MR1738044
  29. A. I. Šnirelʼman, Ergodic properties of eigenfunctions, Uspehi Mat. Nauk 29 (1974), 181-182 MR402834
  30. André Voros, Semiclassical ergodicity of quantum eigenstates in the Wigner representation, Stochastic behavior in classical and quantum Hamiltonian systems (Volta Memorial Conf., Como, 1977) 93 (1979), 326-333, Springer, Berlin Zbl0404.70012MR550907
  31. Scott A. Wolpert, The modulus of continuity for Γ 0 ( m ) semi-classical limits, Comm. Math. Phys. 216 (2001), 313-323 Zbl1007.11028MR1814849
  32. Steven Zelditch, Uniform distribution of eigenfunctions on compact hyperbolic surfaces, Duke Math. J. 55 (1987), 919-941 Zbl0643.58029MR916129

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.