Half-delocalization of eigenfunctions for the Laplacian on an Anosov manifold
Nalini Anantharaman[1]; Stéphane Nonnenmacher[2]
- [1] tabacckludge ’Ecole Normale Supérieure Unité de Mathématiques Pures et Appliquées 6, allée d’Italie 69364 LYON Cedex 07 (France)
- [2] CEA/DSM/PhT Service de Physique Théorique Unité de recherche associé CNRS CEA/Saclay 91191 Gif-sur-Yvette (France)
Annales de l’institut Fourier (2007)
- Volume: 57, Issue: 7, page 2465-2523
- ISSN: 0373-0956
Access Full Article
topAbstract
topHow to cite
topAnantharaman, Nalini, and Nonnenmacher, Stéphane. "Half-delocalization of eigenfunctions for the Laplacian on an Anosov manifold." Annales de l’institut Fourier 57.7 (2007): 2465-2523. <http://eudml.org/doc/10304>.
@article{Anantharaman2007,
abstract = {We study the high-energy eigenfunctions of the Laplacian on a compact Riemannian manifold with Anosov geodesic flow. The localization of a semiclassical measure associated with a sequence of eigenfunctions is characterized by the Kolmogorov-Sinai entropy of this measure. We show that this entropy is necessarily bounded from below by a constant which, in the case of constant negative curvature, equals half the maximal entropy. In this sense, high-energy eigenfunctions are at least half-delocalized.},
affiliation = {tabacckludge ’Ecole Normale Supérieure Unité de Mathématiques Pures et Appliquées 6, allée d’Italie 69364 LYON Cedex 07 (France); CEA/DSM/PhT Service de Physique Théorique Unité de recherche associé CNRS CEA/Saclay 91191 Gif-sur-Yvette (France)},
author = {Anantharaman, Nalini, Nonnenmacher, Stéphane},
journal = {Annales de l’institut Fourier},
keywords = {Quantum chaos; semiclassical measure; ergodic theory; entropy; Anosov flows; quantum chaos},
language = {eng},
number = {7},
pages = {2465-2523},
publisher = {Association des Annales de l’institut Fourier},
title = {Half-delocalization of eigenfunctions for the Laplacian on an Anosov manifold},
url = {http://eudml.org/doc/10304},
volume = {57},
year = {2007},
}
TY - JOUR
AU - Anantharaman, Nalini
AU - Nonnenmacher, Stéphane
TI - Half-delocalization of eigenfunctions for the Laplacian on an Anosov manifold
JO - Annales de l’institut Fourier
PY - 2007
PB - Association des Annales de l’institut Fourier
VL - 57
IS - 7
SP - 2465
EP - 2523
AB - We study the high-energy eigenfunctions of the Laplacian on a compact Riemannian manifold with Anosov geodesic flow. The localization of a semiclassical measure associated with a sequence of eigenfunctions is characterized by the Kolmogorov-Sinai entropy of this measure. We show that this entropy is necessarily bounded from below by a constant which, in the case of constant negative curvature, equals half the maximal entropy. In this sense, high-energy eigenfunctions are at least half-delocalized.
LA - eng
KW - Quantum chaos; semiclassical measure; ergodic theory; entropy; Anosov flows; quantum chaos
UR - http://eudml.org/doc/10304
ER -
References
top- N. Anantharaman, H. Koch, S. Nonnenmacher, Entropy of eigenfunctions, (2006) Zbl1175.81118
- Nalini Anantharaman, Entropy and the localization of eigenfunctions, (2008) Zbl1175.35036
- Nalini Anantharaman, Stéphane Nonnenmacher, Entropy of semiclassical measures of the Walsh-quantized baker’s map, Ann. Henri Poincaré 8 (2007), 37-74 Zbl1109.81035
- Pierre H. Bérard, On the wave equation on a compact Riemannian manifold without conjugate points, Math. Z. 155 (1977), 249-276 Zbl0341.35052MR455055
- M. V. Berry, Regular and irregular semiclassical wavefunctions, J. Phys. A 10 (1977), 2083-2091 Zbl0377.70014MR489542
- Oriol Bohigas, Random matrix theories and chaotic dynamics, Chaos et physique quantique (Les Houches, 1989) (1991), 87-199, North-Holland, Amsterdam MR1188418
- A. Bouzouina, D. Robert, Uniform semiclassical estimates for the propagation of quantum observables, Duke Math. J. 111 (2002), 223-252 Zbl1069.35061MR1882134
- Y. Colin de Verdière, Ergodicité et fonctions propres du laplacien, Comm. Math. Phys. 102 (1985), 497-502 Zbl0592.58050MR818831
- Yves Colin de Verdière, Bernard Parisse, Équilibre instable en régime semi-classique. I. Concentration microlocale, Comm. Partial Differential Equations 19 (1994), 1535-1563 Zbl0819.35116MR1294470
- Mouez Dimassi, Johannes Sjöstrand, Spectral asymptotics in the semi-classical limit, 268 (1999), Cambridge University Press, Cambridge Zbl0926.35002MR1735654
- Harold Donnelly, Quantum unique ergodicity, Proc. Amer. Math. Soc. 131 (2003), 2945-2951 (electronic) Zbl1027.58024MR1974353
- Nelson Dunford, Jacob T. Schwartz, Linear operators. I. General theory, (1958), Interscience Publishers, Inc., New York Zbl0084.10402MR117523
- L.C. Evans, M.Z worski, Lectures on semiclassical analysis
- Frédéric Faure, Stéphane Nonnenmacher, On the maximal scarring for quantum cat map eigenstates, Comm. Math. Phys. 245 (2004), 201-214 Zbl1071.81044MR2036373
- Frédéric Faure, Stéphane Nonnenmacher, Stephan De Bièvre, Scarred eigenstates for quantum cat maps of minimal periods, Comm. Math. Phys. 239 (2003), 449-492 Zbl1033.81024MR2000926
- Jacques Hadamard, Le problème de Cauchy et les équations aux dérivées partielles linéaires hyperboliques, (1932), Hermann, Paris Zbl0006.20501
- Lars Hörmander, The analysis of linear partial differential operators. I, 256 (1983), Springer-Verlag, Berlin Zbl0521.35001
- Anatole Katok, Boris Hasselblatt, Introduction to the modern theory of dynamical systems, 54 (1995), Cambridge University Press, Cambridge Zbl0878.58020MR1326374
- D. Kelmer, Arithmetic quantum unique ergodicity for symplectic linear maps of the multidimensional torus Zbl1202.81076
- D. Kelmer, Scarring on invariant manifolds for perturbed quantized hyperbolic toral automorphisms Zbl1136.37018
- Wilhelm Klingenberg, Riemannian manifolds with geodesic flow of Anosov type, Ann. of Math. (2) 99 (1974), 1-13 Zbl0272.53025MR377980
- K. Kraus, Complementary observables and uncertainty relations, Phys. Rev. D (3) 35 (1987), 3070-3075 MR897714
- F. Ledrappier, L.-S. Young, The metric entropy of diffeomorphisms. I. Characterization of measures satisfying Pesin’s entropy formula, Ann. of Math. (2) 122 (1985), 509-539 Zbl0605.58028
- Elon Lindenstrauss, Invariant measures and arithmetic quantum unique ergodicity, Ann. of Math. (2) 163 (2006), 165-219 Zbl1104.22015MR2195133
- Hans Maassen, J. B. M. Uffink, Generalized entropic uncertainty relations, Phys. Rev. Lett. 60 (1988), 1103-1106 MR932170
- Stéphane Nonnenmacher, Maciej Zworski, Quantum decay rates in chaotic scattering, (2007) Zbl1226.35061
- Zeév Rudnick, Peter Sarnak, The behaviour of eigenstates of arithmetic hyperbolic manifolds, Comm. Math. Phys. 161 (1994), 195-213 Zbl0836.58043MR1266075
- Johannes Sjöstrand, Maciej Zworski, Asymptotic distribution of resonances for convex obstacles, Acta Math. 183 (1999), 191-253 Zbl0989.35099MR1738044
- A. I. Šnirelʼman, Ergodic properties of eigenfunctions, Uspehi Mat. Nauk 29 (1974), 181-182 MR402834
- André Voros, Semiclassical ergodicity of quantum eigenstates in the Wigner representation, Stochastic behavior in classical and quantum Hamiltonian systems (Volta Memorial Conf., Como, 1977) 93 (1979), 326-333, Springer, Berlin Zbl0404.70012MR550907
- Scott A. Wolpert, The modulus of continuity for semi-classical limits, Comm. Math. Phys. 216 (2001), 313-323 Zbl1007.11028MR1814849
- Steven Zelditch, Uniform distribution of eigenfunctions on compact hyperbolic surfaces, Duke Math. J. 55 (1987), 919-941 Zbl0643.58029MR916129
Citations in EuDML Documents
topNotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.