Expanding attractors

Robert F. Williams

Publications Mathématiques de l'IHÉS (1974)

  • Volume: 43, page 169-203
  • ISSN: 0073-8301

How to cite

top

Williams, Robert F.. "Expanding attractors." Publications Mathématiques de l'IHÉS 43 (1974): 169-203. <http://eudml.org/doc/103926>.

@article{Williams1974,
author = {Williams, Robert F.},
journal = {Publications Mathématiques de l'IHÉS},
language = {eng},
pages = {169-203},
publisher = {Institut des Hautes Études Scientifiques},
title = {Expanding attractors},
url = {http://eudml.org/doc/103926},
volume = {43},
year = {1974},
}

TY - JOUR
AU - Williams, Robert F.
TI - Expanding attractors
JO - Publications Mathématiques de l'IHÉS
PY - 1974
PB - Institut des Hautes Études Scientifiques
VL - 43
SP - 169
EP - 203
LA - eng
UR - http://eudml.org/doc/103926
ER -

References

top
  1. [0] V. ALEKSEEV, Quasirandom dynamical systems, I, Math. USSR Sbornik, 5 (1968), 73-128. Zbl0198.56903MR43 #2687b
  2. [1] M. GROMOV, Dokl. Akad. Nauk SSSR, Transversal mappings of foliations, 182 (1968), 255-258 = Soviet Math. Dokl., 9 (1968), 1126-1129. Zbl0185.27601
  3. [2] A. HAEFLIGER, Structures feuilletées et cohomologie à valeurs dans un faisceau de groupoïdes, Comm. Math. Helv., 32 (1957), 248-329. Zbl0085.17303MR20 #6702
  4. [3] A. HAEFLIGER, Feuilletages sur les variétés ouvertes, Topology, 9 (1970), 183-194. Zbl0196.26901MR41 #7709
  5. [4] M. HIRSCH, J. PALIS, C. PUGH and M. SHUB, Neighborhoods of hyperbolic sets, Inventiones Math., 9 (1970), 121-134. Zbl0191.21701MR41 #7232
  6. [5] M. HIRSCH and C. PUGH, The stable manifold theorem, see [10] = Global Analysis, 125-163. 
  7. [6] J. MUNKRES, Elementary Differentiable Topology, Princeton Univ. Press., Princeton, 1963. 
  8. [7] M. SHUB, Endomorphisms of compact differentiable manifolds, Amer. J. of Math., 91 (1969), 175-199. Zbl0201.56305MR39 #2169
  9. [8] M. SHUB, Expanding maps, Global Analysis = [10], 273-276. Zbl0213.50302MR42 #1158
  10. [9] S. S. SMALE, Differentiable dynamical systems, Bull. Amer. Math. Soc., 13 (1967), 747-817. Zbl0202.55202MR37 #3598
  11. [10] S. S. SMALE and S. CHERN, Editors, Global Analysis, Proceedings of Symposia in Pure Mathematics, Vol. 14, American Math. Soc., 1970. Zbl0204.07602
  12. [11] S. S. SMALE and S. CHERN, Diffeomorphisms with many periodic points, Differential and Combinatorial Topology, Princeton Univ. Press, 1965, 63-80. Zbl0142.41103MR31 #6244
  13. [12] J. H. C. WHITEHEAD, On C' complexes, Ann. of Math., 41 (1940), 809-824. Zbl0025.09203MR2,73dJFM66.0955.03
  14. [13] R. WILLIAMS, The structure of attractors, International Congress of Mathematicians, Nice, 1970. Zbl0228.58008
  15. [14] R. WILLIAMS, Expanding attractors, Proceedings of the Mount Aigual Conference on Differential Topology, Univ. of Montpellier, 1969. Zbl0208.25801MR44 #4784
  16. [15] R. WILLIAMS, One dimensional non-wandering sets, Topology, 6 (1967), 473-487. Zbl0159.53702MR36 #897
  17. [16] R. WILLIAMS, Classification of one-dimensional attractors, Global Analysis = [10], 341-361. Zbl0213.50401MR42 #1134
  18. [17] R. WILLIAMS, The zeta function of an attractor, Conference on Topology of Manifolds, Prindel, Weber and Smith, Boston, 1968, 155-161. Zbl0179.51902MR38 #3877
  19. [18] C. KURATOWSKI, Topologie, vol. II, 3e éd., Warszawa, 1961. Zbl0078.14603MR24 #A2958

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.