Riemann-Roch for singular varieties

Paul Baum; William Fulton; Robert Macpherson

Publications Mathématiques de l'IHÉS (1975)

  • Volume: 45, page 101-145
  • ISSN: 0073-8301

How to cite

top

Baum, Paul, Fulton, William, and Macpherson, Robert. "Riemann-Roch for singular varieties." Publications Mathématiques de l'IHÉS 45 (1975): 101-145. <http://eudml.org/doc/103937>.

@article{Baum1975,
author = {Baum, Paul, Fulton, William, Macpherson, Robert},
journal = {Publications Mathématiques de l'IHÉS},
language = {eng},
pages = {101-145},
publisher = {Institut des Hautes Études Scientifiques},
title = {Riemann-Roch for singular varieties},
url = {http://eudml.org/doc/103937},
volume = {45},
year = {1975},
}

TY - JOUR
AU - Baum, Paul
AU - Fulton, William
AU - Macpherson, Robert
TI - Riemann-Roch for singular varieties
JO - Publications Mathématiques de l'IHÉS
PY - 1975
PB - Institut des Hautes Études Scientifiques
VL - 45
SP - 101
EP - 145
LA - eng
UR - http://eudml.org/doc/103937
ER -

References

top
  1. [A-H 1] M. F. ATIYAH and F. HIRZEBRUCH, Analytic cycles on complex manifolds, Topology, 1, 1961, 25-45. Zbl0108.36401MR26 #3091
  2. [A-H 2] M. F. ATIYAH and F. HIRZEBRUCH, The Riemann-Roch theorem for analytic embeddings, Topology, 1, 1961, 151-166. Zbl0108.36402MR26 #5593
  3. [App] W. FULTON, Rational equivalence on singular varieties, Appendix to this paper, Publ. Math. I.H.E.S., n° 45 (1975), 147-167. Zbl0332.14002MR53 #8060
  4. [Baum] P. BAUM, Riemann-Roch for singular varieties, A.M.S. Proceedings, Institute on Differential Geometry, Summer 1973, to appear. 
  5. [B-F-M] P. BAUM, W. FULTON and R. MACPHERSON, Riemann-Roch and topological K-theory, to appear. Zbl0355.14008
  6. [B-S] A. BOREL and J.-P. SERRE, Le théorème de Riemann-Roch, Bull. Soc. Math. France, 86 (1958), 97-136. Zbl0091.33004MR22 #6817
  7. [EGA] A. GROTHENDIECK and J. DIEUDONNÉ, Eléments de géométrie algébrique, Publ. Math. I.H.E.S., nos 4, 8, 11, 17, 20, 24, 28, 32, 1960-1967. 
  8. [F] W. FULTON, Riemann-Roch for singular varieties, Algebraic Geometry, Arcata 1974, Proc. of Symp. in Pure Math., 29, 449-457. Zbl0306.14005MR52 #13844
  9. [G] A. GROTHENDIECK, La théorie des classes de Chern, Bull. Soc. Math. France, 86 (1958), 137-154. Zbl0091.33201MR22 #6818
  10. [M 1] R. MACPHERSON, Analytic vector-bundle maps, to appear. Zbl0283.58005
  11. [M 2] R. MACPHERSON, Chern classes of singular varieties, Ann. of Math, 100 (1974). Zbl0311.14001MR50 #13587
  12. [R] M. RAYNAUD, Flat modules in algebraic geometry, Algebraic Geometry, Oslo 1970, Proceedings of the 5th Nordic Summer-School in Mathematics, 255-275, Wolters-Noordhoff, Groningen, 1970. Zbl0244.14002
  13. [S] J.-P. SERRE, Algèbre locale ; multiplicités, Springer Lecture Notes in Mathematics, 11 (1965). Zbl0142.28603MR34 #1352
  14. [SGA 6] P. BERTHELOT, A. GROTHENDIECK, L. ILLUSIE et al., Théorie des intersections et théorème de Riemann-Roch, Springer Lecture Notes in Mathematics, 225 (1971). Zbl0218.14001MR50 #7133

Citations in EuDML Documents

top
  1. William Fulton, Rational equivalence on singular varieties
  2. Paul Roberts, Intersection Multiplicities in Commutative Algebra
  3. Shoji Yokura, A singular Riemann-Roch for Hirzebruch characteristics
  4. William Fulton, A Hirzebruch-Riemann-Roch formula for analytic spaces and non-projective algebraic varieties
  5. William Fulton, Henri Gillet, Riemann-Roch for general algebraic varieties
  6. Sinan Sertöz, Residues of singular holomorphic foliations
  7. Marcel Morales, Polynôme d'Hilbert-Samuel des clôtures intégrales des puissances d'un idéal m-primaire
  8. Henri Gillet, Universal cycle classes
  9. Henri Gillet, Christophe Soulé, Direct images in non-archimedean Arakelov theory
  10. Jean-Michel Bismut, Gilles Lebeau, Complex immersions and Quillen metrics

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.