A proof of the stability conjecture
Publications Mathématiques de l'IHÉS (1987)
- Volume: 66, page 161-210
- ISSN: 0073-8301
Access Full Article
topHow to cite
topMañé, Ricardo. "A proof of the $C^1$ stability conjecture." Publications Mathématiques de l'IHÉS 66 (1987): 161-210. <http://eudml.org/doc/104026>.
@article{Mañé1987,
author = {Mañé, Ricardo},
journal = {Publications Mathématiques de l'IHÉS},
keywords = {diffeomorphism; structural stability},
language = {eng},
pages = {161-210},
publisher = {Institut des Hautes Études Scientifiques},
title = {A proof of the $C^1$ stability conjecture},
url = {http://eudml.org/doc/104026},
volume = {66},
year = {1987},
}
TY - JOUR
AU - Mañé, Ricardo
TI - A proof of the $C^1$ stability conjecture
JO - Publications Mathématiques de l'IHÉS
PY - 1987
PB - Institut des Hautes Études Scientifiques
VL - 66
SP - 161
EP - 210
LA - eng
KW - diffeomorphism; structural stability
UR - http://eudml.org/doc/104026
ER -
References
top- [1] A. ANDRONOV, L. PONTRJAGIN, Systèmes grossiers, Dokl. Akad. Nauk. SSSR, 14 (1937), 247-251. Zbl0016.11301JFM63.0728.01
- [2] D. V. ANOSOV, Geodesic flows on closed Riemannian manifolds with negative curvature, Proc. Steklov Inst. Math., 90 (1967), 1-235. Zbl0176.19101MR36 #7157
- [3] R. BOWEN, Equilibrium states and the ergodic theory of Anosov diffeomorphisms, Springer Lecture Notes in Math., 470 (1975). Zbl0308.28010MR56 #1364
- [4] J. FRANKS, Necessary conditions for stability of diffeomorphisms, Trans. A.M.S., 158 (1971), 301-308. Zbl0219.58005MR44 #1042
- [5] J. GUCKENHEIMER, A strange, strange attractor, in The Hopf bifurcation and its applications, Applied Mathematics Series, 19 (1976), 165-178, Springer Verlag. MR58 #13209
- [6] M. HIRSCH, C. PUGH, M. SHUB, Invariant manifolds, Springer Lecture Notes in Math., 583 (1977). Zbl0355.58009MR58 #18595
- [7] R. LABARCA, M. J. PACIFICO, Stability of singular horseshoes, Topology, 25 (1986), 337-352. Zbl0611.58033MR87h:58106
- [8] S. T. LIAO, On the stability conjecture, Chinese Ann. Math., 1 (1980), 9-30. Zbl0449.58013MR82c:58031
- [9] R. MAÑÉ, Persistent manifolds are normally hyperbolic, Trans. A.M.S., 246 (1978), 261-283. Zbl0362.58014MR80c:58019
- [10] R. MAÑÉ, Expansive diffeomorphisms, in Dynamical Systems-Warwick 1974, Springer Lecture Notes in Math., 468 (1975), 162-174. Zbl0309.58016MR58 #31263
- [11] R. MAÑÉ, Characterization of AS diffeomorphisms, Proc. ELAM III, Springer Lecture Notes in Math., 597 (1977), 389-394. Zbl0359.58011MR56 #16695
- [12] R. MAÑÉ, An ergodic closing lemma, Ann. of Math., 116 (1982), 503-540. Zbl0511.58029MR84f:58070
- [13] R. MAÑÉ, On the creation of homoclinic points, Publ. Math. I.H.E.S., 66 (1987), 139-159. Zbl0669.58024MR89e:58089
- [14] S. NEWHOUSE, Lectures on dynamical systems, Progr. in Math., 8 (1980), 1-114. Zbl0444.58001MR81m:58028
- [15] J. PALIS, A note on Ω-stability, in Global Analysis, Proc. Sympos. Pure Math., A.M.S., 14 (1970), 221-222. Zbl0214.50801MR42 #5276
- [16] J. PALIS, S. SMALE, Structural stability theorems, in Global Analysis, Proc. Sympos. Pure Math., A.M.S., 14 (1970), 223-231. Zbl0214.50702MR42 #2505
- [17] V. A. PLISS, Analysis of the necessity of the conditions of Smale and Robbin for structural stability of periodic systems of differential equations, Diff. Uravnenija, 8 (1972), 972-983. Zbl0286.34088MR46 #921
- [18] V. A. PLISS, On a conjecture due to Smale, Diff. Uravnenija, 8 (1972), 268-282. Zbl0243.34077MR45 #8957
- [19] C. PUGH, The closing lemma, Amer. J. Math., 89 (1967), 956-1009. Zbl0167.21803MR37 #2256
- [20] J. ROBBIN, A structural stability theorem, Ann. of Math., 94 (1971), 447-493. Zbl0224.58005MR44 #4783
- [21] C. ROBINSON, Cr structural stability implies Kupka-Smale, in Dynamical Systems, Salvador, 1971, Academic Press 1973, 443-449. Zbl0275.58014MR48 #12601
- [22] C. ROBINSON, Structural stability of C1 diffeomorphisms, J. Diff. Eq., 22 (1976), 28-73. Zbl0343.58009MR57 #14051
- [23] M. SHUB, Stabilité globale des systèmes dynamiques, Astérisque, 56 (1978). Zbl0396.58014MR80c:58015
- [24] S. SMALE, Diffeomorphisms with many periodic points, in Differential and Combinatorial Topology, Princeton Univ. Press, 1964, 63-80. Zbl0142.41103MR31 #6244
- [25] S. SMALE, Differentiable dynamical systems, Bull. A.M.S., 73 (1967), 747-817. Zbl0202.55202MR37 #3598
- [26] S. SMALE, The Ω-stability theorem, in Global Analysis, Proc. Sympos. Pure Math., A.M.S., 14 (1970), 289-297. Zbl0205.54104MR42 #6852
Citations in EuDML Documents
top- Kazuhiro Sakai, On positively expansive differentiable maps
- Jacob Palis, On the -stability conjecture
- J. Palis, J.-C. Yoccoz, Centralizers of Anosov diffeomorphisms on tori
- François Béguin, Classification des difféomorphismes de Smale des surfaces : types géométriques réalisables
- J. Iglesias, A. Portela, A. Rovella, Structurally stable perturbations of polynomials in the Riemann sphere
- Raúl Ures, Abundance of hyperbolicity in the topology
- Andrzej Bielecki, Topological conjugacy of cascades generated by gradient flows on the two-dimensional sphere
- Michael Benedicks, Marcelo Viana, Random perturbations and statistical properties of Hénon-like maps
- Jean-Christophe Yoccoz, Polynômes quadratiques et attracteur de Hénon
- Sylvain Crovisier, Periodic orbits and chain-transitive sets of C1-diffeomorphisms
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.