Reductive group actions with one-dimensional quotient

Hanspeter Kraft; Gerald W. Schwarz

Publications Mathématiques de l'IHÉS (1992)

  • Volume: 76, page 1-97
  • ISSN: 0073-8301

How to cite

top

Kraft, Hanspeter, and Schwarz, Gerald W.. "Reductive group actions with one-dimensional quotient." Publications Mathématiques de l'IHÉS 76 (1992): 1-97. <http://eudml.org/doc/104084>.

@article{Kraft1992,
author = {Kraft, Hanspeter, Schwarz, Gerald W.},
journal = {Publications Mathématiques de l'IHÉS},
keywords = {algebraic group action; linearizability problem; moduli space; nonlinearizable actions},
language = {eng},
pages = {1-97},
publisher = {Institut des Hautes Études Scientifiques},
title = {Reductive group actions with one-dimensional quotient},
url = {http://eudml.org/doc/104084},
volume = {76},
year = {1992},
}

TY - JOUR
AU - Kraft, Hanspeter
AU - Schwarz, Gerald W.
TI - Reductive group actions with one-dimensional quotient
JO - Publications Mathématiques de l'IHÉS
PY - 1992
PB - Institut des Hautes Études Scientifiques
VL - 76
SP - 1
EP - 97
LA - eng
KW - algebraic group action; linearizability problem; moduli space; nonlinearizable actions
UR - http://eudml.org/doc/104084
ER -

References

top
  1. [BH1] H. BASS, W. HABOUSH, Linearizing certain reductive group actions, Trans. Amer. Math. Soc. 292 (1985), 463-482. Zbl0602.14047MR87d:14039
  2. [BH2] H. BASS, W. HABOUSH, Some equivariant K-theory of affine algebraic group actions, Comm. Algebra 15 (1987), 181-217. Zbl0612.14047MR88g:14013
  3. [Br] G. BREDON, Introduction to Compact Transformation Groups, Pure and Applied Mathematics vol. 46, Academic Press, New York, 1972. Zbl0246.57017MR54 #1265
  4. [DG] M. DEMAZURE, P. GABRIEL, Groupes Algébriques, Masson, Paris-Amsterdam, 1970. Zbl0203.23401
  5. [Go] R. GODEMENT, Topologie Algébrique et Théorie des Faisceaux, Publ. de l'Institut de Math. de l'Université de Strasbourg XIII, Hermann, Paris, 1964. Zbl0080.16201
  6. [Gr] A. GROTHENDIECK, Torsion homologique et sections rationnelles, in Séminaire Chevalley 1958, exposé n° 5. 
  7. [Ha] R. HARTSHORNE, Algebraic Geometry, Graduate Texts in Math. vol. 52, Springer Verlag, New York-Heidelberg-Berlin, 1977. Zbl0367.14001MR57 #3116
  8. [Ka] T. KAMBAYASHI, Automorphism group of a polynomial ring and algebraic group actions on an affine space, J. Algebra 60 (1979), 439-451. Zbl0429.14017MR81e:14026
  9. [Kn] F. KNOP, Nichtlinearisierbare Operationen halbeinfacher Gruppen auf affinen Räumen, Invent. Math. 105 (1991), 217-220. Zbl0739.20019MR92c:14046
  10. [KoR1] M. KORAS, P. RUSSELL, On linearizing "good" C*-actions on C3, in Group Actions and Invariant Theory, Can. Math. Soc. Conf. Proc. vol. 10, 1989, pp.93-102. Zbl0687.14037MR90i:14050
  11. [KoR2] M. KORAS, P. RUSSELL, Codimension 2 torus actions on affine n-space, in Group Actions and Invariant Theory, Can. Math. Soc. Conf. Proc. vol. 10, 1989, pp. 103-110. Zbl0725.14036MR90j:14061
  12. [Kr] H. KRAFT, Geometrische Methoden in der Invariantentheorie, Aspekte der Mathematik vol. D1, Vieweg Verlag, Braunschweig, 1984. Zbl0569.14003MR86j:14006
  13. [Kr1] H. KRAFT, Algebraic automorphisms of affine space, in Topological Methods in Algebraic Transformation Groups, (eds. H. Kraft, T. Petrie, G. W. Schwarz), Progress in Mathematics vol. 80, Birkhäuser Verlag, Basel-Boston, 1989, pp. 81-105. Zbl0719.14030MR91g:14044
  14. [Kr2] H. KRAFT, G-vector bundles and the linearization problem, in Group Actions and Invariant Theory, Can. Math. Soc. Conf. Proc. vol. 10, 1989, pp. 111-123. Zbl0703.14009MR90j:14062
  15. [Kr3] H. KRAFT, C*-actions on affine space, in Operator Algebras, Unitary Representations, Enveloping Algebras, and Invariant Theory, Actes du colloque en l'honneur de Jacques Dixmier (eds. A. Connes, M. Duflo, A. Joseph, R. Rentschler), Progress in Mathematics vol. 92, Birkhäuser Verlag, Basel-Boston, 1990, pp. 561-579. Zbl0747.14014MR92f:14048
  16. [KPR] H. KRAFT, T. PETRIE, J. RANDALL, Quotient varieties, Adv. Math. 74 (1989), 145-162. Zbl0691.14029MR90b:14057
  17. [KP] H. KRAFT, V. L. POPOV, Semisimple group actions on the three dimensional affine space are linear, Comment. Math. Helv. 60 (1985), 446-479. Zbl0645.14020
  18. [KS] H. KRAFT and G. W. SCHWARZ, Reductive group actions on affine space with one-dimensional quotient, in Group Actions and Invariant Theory, Can. Math. Soc. Conf. Proc. vol. 10, 1989, pp. 125-132. Zbl0704.14039
  19. [Li] P. LITTELMANN, On spherical double cones, to appear in J. Alg. Zbl0823.20040
  20. [Lu] D. LUNA, Slices étales, Bull. Soc. Math. France, Mémoire 33 (1973), 81-105. Zbl0286.14014MR49 #7269
  21. [LR] D. LUNA and R. W. RICHARDSON, A generalization of the Chevalley restriction theorem, Duke Math. J. 46 (1979), 487-496. Zbl0444.14010MR80k:14049
  22. [MP] M. MASUDA, T. PETRIE, Equivariant algebraic vector bundles over representations of reductive groups: Theory, Proc. Nat. Acad. Sci. 88 (1991), 9061-9064. Zbl0753.14042MR92j:14059a
  23. [MMP] M. MASUDA, L. MOSER-JAUSLIN, T. PETRIE, Equivariant algebraic vector bundles over representations of reductive groups : Applications, Proc. Nat. Acad. Sci. 88 (1991), 9065-9066. Zbl0753.14005MR92j:14059b
  24. [Pa] D. I. PANYUSHEV, Semisimple automorphism groups of four-dimensional affine space, Math. USSR Izv. 23 (1984), 171-183. Zbl0581.14033
  25. [Sch1] G. W. SCHWARZ, Representations of simple Lie groups with regular rings of invariants, Invent. Math. 49 (1978), 176-191. Zbl0391.20032MR80m:14032
  26. [Sch2] G. W. SCHWARZ, Representations of simple Lie groups with a free module of covariants, Invent. Math. 50 (1978), 1-12. Zbl0391.20033MR80c:14008
  27. [Sch3] G. W. SCHWARZ, Lifting smooth homotopies of orbit spaces, Publ. Math. IHES 51 (1980), 37-135. Zbl0449.57009MR81h:57024
  28. [Sch4] G. W. SCHWARZ, The topology of algebraic quotients, in Topological Methods in Algebraic Transformation Groups, (eds. H. Kraft, T. Petrie, G. W. Schwarz), Progress in Mathematics vol. 10, Birkhäuser Verlag, Basel-Boston, 1989, pp. 135-152. Zbl0708.14034MR90m:14043
  29. [Sch5] G. W. SCHWARZ, Exotic algebraic group actions, C.R. Acad. Sci. Paris 309 (1989), 89-94. Zbl0688.14040MR91b:14066
  30. [Se1] J.-P. SERRE, Cohomologie Galoisienne, Lecture Notes in Mathematics vol. 5, Springer Verlag, Berlin-Heidelberg-New York, 1965. Zbl0136.02801MR34 #1328
  31. [Se2] J.-P. SERRE, Corps Locaux, Publ. de l'Institut de Math. de l'Université de Nancago VIII, Hermann, Paris, 1968. MR50 #7096
  32. [Se3] J.-P. SERRE, Espaces fibrés algébriques, in Séminaire Chevalley 1958, exposé n° 5. 
  33. [Sl] P. SLODOWY, Der Scheibensatz für algebraische Transformationsgruppen, in Algebraic Transformation Groups and Invariant Theory, DMV Seminar vol. 13, Birkhäuser Verlag, Basel-Boston, 1989, pp. 89-113. Zbl0722.14031MR1044587
  34. [St1] R. STEINBERG, Regular elements of semisimple algebraic groups, Publ. Math. IHES, 25 (1965), 49-80. Zbl0136.30002MR31 #4788
  35. [St2] R. STEINBERG, Endomorphisms of linear algebraic groups, Mem. Amer. Math. Soc. 80 (1968). Zbl0164.02902MR37 #6288

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.