Étale cohomology for non-Archimedean analytic spaces
Publications Mathématiques de l'IHÉS (1993)
- Volume: 78, page 5-161
- ISSN: 0073-8301
Access Full Article
topHow to cite
topBerkovich, Vladimir G.. "Étale cohomology for non-Archimedean analytic spaces." Publications Mathématiques de l'IHÉS 78 (1993): 5-161. <http://eudml.org/doc/104093>.
@article{Berkovich1993,
author = {Berkovich, Vladimir G.},
journal = {Publications Mathématiques de l'IHÉS},
keywords = {étale cohomology; compact support; analytic spaces; morphisms; sheaves; rigid spaces},
language = {eng},
pages = {5-161},
publisher = {Institut des Hautes Études Scientifiques},
title = {Étale cohomology for non-Archimedean analytic spaces},
url = {http://eudml.org/doc/104093},
volume = {78},
year = {1993},
}
TY - JOUR
AU - Berkovich, Vladimir G.
TI - Étale cohomology for non-Archimedean analytic spaces
JO - Publications Mathématiques de l'IHÉS
PY - 1993
PB - Institut des Hautes Études Scientifiques
VL - 78
SP - 5
EP - 161
LA - eng
KW - étale cohomology; compact support; analytic spaces; morphisms; sheaves; rigid spaces
UR - http://eudml.org/doc/104093
ER -
References
top- [Ber] BERKOVICH, V. G., Spectral theory and analytic geometry over non-Archimedean fields, Mathematical Surveys and Monographs, vol. 33, American Mathematical Society, 1990. Zbl0715.14013MR91k:32038
- [Bos] BOSCH, S., Eine bemerkenswerte Eigenschaft der formellen Fasern affinoider Räume, Math. Ann., 229 (1977), 25-45. Zbl0385.32008MR56 #5952
- [BGR] BOSCH, S., GÜNTZER, U., Remmert, R., Non-Archimedean analysis. A systematic approach to rigid analytic geometry, Grundlehren der Mathematischen Wissenschaften, Bd. 261, Springer, Berlin-Heidelberg-New York, 1984. Zbl0539.14017
- [BL] BOSCH, S., LÜTKEBOHMERT, W., Stable reduction and uniformization of abelian varieties I, Math. Ann., 270 (1985), 349-379. Zbl0554.14012MR86j:14040a
- [Bou] BOURBAKI, N., Topologie générale, Paris, Hermann, 1951.
- [Car] CARAYOL, H., Non-abelian Lubin-Tate Theory, in Automorphic Forms, Shimura Varieties, and L-Functions, New York-London, Academic Press, 1990, 15-39. Zbl0704.11049MR91i:11169
- [Dr1] DRINFELD, V. G., Elliptic modules, Math. USSR Sbornik, 23 (1974), 561-592. Zbl0321.14014MR52 #5580
- [Dr2] DRINFELD, V. G., Coverings of p-adic symmetric domains, Funct. Anal. Appl., 10 (1976), 107-115. Zbl0346.14010MR54 #10281
- [En] ENGELKING, R., General topology, Warszawa, 1977. Zbl0373.54002MR58 #18316b
- [FrPu] FRESNEL, J., VAN DER PUT, M., Géométrie analytique rigide et applications, Progress in Mathematics, vol. 18, Boston, Birkhäuser, 1981. Zbl0479.14015MR83g:32001
- [GaZi] GABRIEL, P., ZISMAN, M., Calculus of fractions and homotopy theory, Ergebnisse der Mathematik und ihrer Grenzgebiete, Bd. 35, Berlin-Heidelberg-New York, Springer, 1967. Zbl0186.56802MR35 #1019
- [God] GODEMENT R., Topologie algébrique et théorie des faisceaux, Paris, Hermann, 1958. Zbl0080.16201MR21 #1583
- [Gro] GROTHENDIECK, A., Sur quelques points d'algèbre homologique, Tôhoku Math. J., 9 (1957), 119-221. Zbl0118.26104MR21 #1328
- [Gro2] GROTHENDIECK, A., Le groupe de Brauer, in Dix exposés sur la cohomologie des schémas, Amsterdam, North-Holland, 1968, 46-188. Zbl0198.25901MR39 #5586a
- [EGAIV] GROTHENDIECK, A., DIEUDONNÉ, J., Éléments de géométrie algébrique, IV. Étude locale des schémas et des morphismes de schémas, Publ. Math. I.H.E.S., 20 (1964), 25 (1965), 28 (1966), 32 (1967). Zbl0136.15901
- [Gru] GRUSON, L., Théorie de Fredholm p-adique, Bull. Soc. math. France, 94 (1966), 67-95. Zbl0149.34702MR37 #1971
- [Ha1] HARTSHORNE, R., Residues and Duality, Lecture Notes in Math., 20, Berlin-Heidelberg-New York, Springer, 1966. Zbl0212.26101MR36 #5145
- [Ha2] HARTSHORNE, R., Algebraic Geometry, Berlin-Heidelberg-New York, Springer, 1977. Zbl0367.14001MR57 #3116
- [Kie] KIEHL, R., Ausgezeichnete Ringe in der nichtarchimedischen analytischen Geometrie, J. Reine Angew. Math., 234 (1969), 89-98. Zbl0169.36501MR39 #4450
- [Mat] MATSUMURA, H., Commutative ring theory, Cambridge University Press, 1980.
- [Mit] MITCHELL, B., Theory of Categories, New York-London, Academic Press, 1965. Zbl0136.00604MR34 #2647
- [Put] VAN DER PUT, M., The class group of a one-dimensional affinoid space, Ann. Inst. Fourier, 30 (1980), 155-164. Zbl0426.14014MR82h:14018
- [Ray] RAYNAUD, M., Anneaux locaux henséliens, Lecture Notes in Math., 169, Berlin-Heidelberg-New York, Springer, 1970. Zbl0203.05102MR43 #3252
- [SGA1] GROTHENDIECK, A., Séminaire de géométrie algébrique, I. Revêtements étales et groupe fondamental, Lecture Notes in Math., 224, Berlin-Heidelberg-New York, Springer, 1971. Zbl0234.14002MR50 #7129
- [SGA4] ARTIN, M., GROTHENDIECK, A., VERDIER, J.-L., Théorie des topos et cohomologie étale des schémas, Lecture Notes in Math., 269, 270, 305, Berlin-Heidelberg-New York, Springer, 1972-1973.
- [SGA41/2] DELIGNE, P. et al., Cohomologie étale, Lectures Notes in Math., 569, Berlin-Heidelberg-New York, Springer, 1977. Zbl0345.00010MR57 #3132
- [ScSt] SCHNEIDER, P., STUHLER, U., The cohomology of p-adic symmetric spaces, Invent. math., 105 (1991), 47-122. Zbl0751.14016MR92k:11057
- [Ser] SERRE, J.-P., Cohomologie galoisienne, Lectures Notes in Math., 5, Berlin-Heidelberg-New York, Springer, 1964. Zbl0128.26303
- [ZaSa] ZARISKI, O., SAMUEL, P., Commutative algebra, Berlin-Heidelberg-New York, Springer, 1975.
Citations in EuDML Documents
top- Antoine Ducros, Image réciproque du squelette par un morphisme entre espaces de Berkovich de même dimension
- A. J. De Jong, Étale fundamental groups of non-archimedean analytic spaces
- Yakov Varshavsky, -adic uniformization of unitary Shimura varieties
- Elena Mantovan, On non-basic Rapoport-Zink spaces
- Antoine Ducros, Les espaces de Berkovich sont excellents
- Thomas Hausberger, Uniformisation des variétés de Laumon-Rapoport-Stuhler et conjecture de Drinfeld-Carayol
- Jean-François Boutot, Uniformisation -adique des variétés de Shimura
- Jean François Dat, Espaces symétriques de Drinfeld et correspondance de Langlands locale
- Bertrand Rémy, Amaury Thuillier, Annette Werner, Bruhat-Tits theory from Berkovich’s point of view. I. Realizations and compactifications of buildings
- William Gignac, Equidistribution of preimages over nonarchimedean fields for maps of good reduction
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.