Multiplicity results for a class of semilinear elliptic equations on m

Piero Montecchiari

Rendiconti del Seminario Matematico della Università di Padova (1996)

  • Volume: 95, page 217-252
  • ISSN: 0041-8994

How to cite

top

Montecchiari, Piero. "Multiplicity results for a class of semilinear elliptic equations on $\mathbb {R}^m$." Rendiconti del Seminario Matematico della Università di Padova 95 (1996): 217-252. <http://eudml.org/doc/108393>.

@article{Montecchiari1996,
author = {Montecchiari, Piero},
journal = {Rendiconti del Seminario Matematico della Università di Padova},
keywords = {multibump homoclinic solutions; multiplicity},
language = {eng},
pages = {217-252},
publisher = {Seminario Matematico of the University of Padua},
title = {Multiplicity results for a class of semilinear elliptic equations on $\mathbb \{R\}^m$},
url = {http://eudml.org/doc/108393},
volume = {95},
year = {1996},
}

TY - JOUR
AU - Montecchiari, Piero
TI - Multiplicity results for a class of semilinear elliptic equations on $\mathbb {R}^m$
JO - Rendiconti del Seminario Matematico della Università di Padova
PY - 1996
PB - Seminario Matematico of the University of Padua
VL - 95
SP - 217
EP - 252
LA - eng
KW - multibump homoclinic solutions; multiplicity
UR - http://eudml.org/doc/108393
ER -

References

top
  1. [1] S. Abenda - P. Caldiroli - P. Montecchiari, Multibump solutions for Duffing-like systems, Preprint S.I.S.S.A. (1994). Zbl0880.34045MR1463913
  2. [2] R.A. Adams, Sobolev Spaces, Academic Press, New York (1975). Zbl0314.46030MR450957
  3. [3] S. Alama - Y.Y. LI, On «Multibump» Bound States for Certain Semilinear Elliptic Equations, Research Report No. 92-NA-012, Carnegie Mellon University (1992). Zbl0796.35043MR1206338
  4. [4] S. Alama - G. TARANTELLO, On semilinear elliptic equations with indefinite nonlinearities, Calc. Var., 1 (1993), pp. 439-475. Zbl0809.35022MR1383913
  5. [5] A. Ambrosetti, Critical points and nonlinear variational problems, Bul. Soc. Math. France, 120 (1992). Zbl0766.49006MR1164129
  6. [6] S. Angenent, The shadowing lemma for elliptic PDE, in Dynamics of Infinite Dimensional Systems, S. N. Chow and J. K. Hale eds., F37(1987). Zbl0653.35030MR921893
  7. [7] P. Caldiroli - P. MONTECCHIARI, Homoclinic orbits for second order Hamiltonian systems with potential changing sign, Comm. Appl. Nonlinear Anal., 1 (1994), pp. 97-129. Zbl0867.70012MR1280118
  8. [8] V. Coti Zelati - I. Ekeland - E. Séré, A Variational approach to homoclinic orbits in Hamiltonian systems, Math. Ann., 288 (1990), pp. 133-160. Zbl0731.34050MR1070929
  9. [9] V. Coti Zelati - P.H. Rabinowitz, Homoclinic orbits for second order Hamiltonian systems possessing superquadratic potentials, J. Amer. Math. Soc., 4 (1991), pp. 693-727. Zbl0744.34045MR1119200
  10. [10] V. Coti Zelati - P.H. Rabinowitz, Homoclinic type solutions for a semilinear elliptic PDE on Rn, Comm. Pure Appl. Math., 45 (1992), pp. 1217-1269. Zbl0785.35029MR1181725
  11. [11] W.Y. Ding - W.M. Ni, On the existence of positive entire solutions of a semilinear elliptic equation, Arch. Rat. Mech. Anal., 91 (1986), pp. 283-308. Zbl0616.35029MR807816
  12. [12] M.J. Esteban - P.L. Lions, Existence and nonexistence results for semilinear elliptic problems in unbounded domains, Proc. Roy. Soc. Edinburgh, 93 (1982), pp. 1-14. Zbl0506.35035MR688279
  13. [13] M.K. Kwong, Uniqueness positive solutions of Δu - u + uP = 0 in Rn, Arch. Rat. Mech. Anal., 105 (1985), pp. 243-266. Zbl0676.35032
  14. [14] L. Lassoued, Periodic solution of a second order superquadratic system with change of sign of potential, J. Diff. Eq., 93(1991), pp. 1-18. Zbl0736.34041MR1122304
  15. [15] P.L. Lions, The concentration-compactness principle in the calculus of variations. The locally compact case, part 1, Ann. Inst. Henri Poincaré, 1 (1984), pp. 109-145. Zbl0541.49009MR778970
  16. [16] P.L. Lions, The concentration-compactness principle in the calculus of variations. The locally compact case, part 2, Ann. Inst. Henri Poincaré, 1 (1984), pp. 223-283. Zbl0704.49004MR778974
  17. [17] C. Miranda, Un'osservazione su un teorema di Brouwer, Boll. Unione Mat. Ital., 3 (1940), pp. 5-7. MR4775JFM66.0217.01
  18. [18] P. Montecchiari, Existence and multiplicity of homoclinic solutions for a class of asymptotically periodic second order Hamiltonian systems, Ann. Mat. Pura Appl. (to appear). See also: Multiplicity of homoclinic solutions for a class of asymptotically periodic second order Hamiltonian systems, Rend. Mat. Ace. Lincei, s. 9, 4 (1993), pp. 265-271. Zbl0802.34052MR1269616
  19. [19] P. Pucci - J. Serrin, The structure of the critical set in the mountain pass theorem, Tran. Am. Math. Soc., 299 (1987), pp. 115-132. Zbl0611.58019MR869402
  20. [20] P.H. Rabinowitz, Homoclinic orbits for a class of Hamiltonian systems, Proc. Roy. Soc. Edinburgh, 114-A (1990), pp. 33-38. Zbl0705.34054MR1051605
  21. [21] P.H. Rabinowitz, A note on a semilinear elliptic equation on Rm, in A tribute in honour of Giovanni Prodi, A. Ambrosetti and A. Marino eds., Quaderni Scuola Normale Superiore, Pisa (1991). Zbl0836.35045MR1205391
  22. [22] E. Sere, Existence of infinitely many homoclinic orbits in Hamiltonian systems, Math. Z., 209 (1992), pp. 27-42. Zbl0725.58017MR1143210
  23. [23] E. Sere, Looking for the Bernoulli shift, Ann. Inst. H. Poincaré. Anal. Non Linéaire, 10 (1993), pp. 561-590. Zbl0803.58013MR1249107
  24. [24] A. Weinstein, Bifurcations andHamilton's principle, Math. Z., 159 (1978), pp. 235-248. Zbl0366.58003MR501163

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.