Multiplicity results for a class of semilinear elliptic equations on
Rendiconti del Seminario Matematico della Università di Padova (1996)
- Volume: 95, page 217-252
- ISSN: 0041-8994
Access Full Article
topHow to cite
topMontecchiari, Piero. "Multiplicity results for a class of semilinear elliptic equations on $\mathbb {R}^m$." Rendiconti del Seminario Matematico della Università di Padova 95 (1996): 217-252. <http://eudml.org/doc/108393>.
@article{Montecchiari1996,
author = {Montecchiari, Piero},
journal = {Rendiconti del Seminario Matematico della Università di Padova},
keywords = {multibump homoclinic solutions; multiplicity},
language = {eng},
pages = {217-252},
publisher = {Seminario Matematico of the University of Padua},
title = {Multiplicity results for a class of semilinear elliptic equations on $\mathbb \{R\}^m$},
url = {http://eudml.org/doc/108393},
volume = {95},
year = {1996},
}
TY - JOUR
AU - Montecchiari, Piero
TI - Multiplicity results for a class of semilinear elliptic equations on $\mathbb {R}^m$
JO - Rendiconti del Seminario Matematico della Università di Padova
PY - 1996
PB - Seminario Matematico of the University of Padua
VL - 95
SP - 217
EP - 252
LA - eng
KW - multibump homoclinic solutions; multiplicity
UR - http://eudml.org/doc/108393
ER -
References
top- [1] S. Abenda - P. Caldiroli - P. Montecchiari, Multibump solutions for Duffing-like systems, Preprint S.I.S.S.A. (1994). Zbl0880.34045MR1463913
- [2] R.A. Adams, Sobolev Spaces, Academic Press, New York (1975). Zbl0314.46030MR450957
- [3] S. Alama - Y.Y. LI, On «Multibump» Bound States for Certain Semilinear Elliptic Equations, Research Report No. 92-NA-012, Carnegie Mellon University (1992). Zbl0796.35043MR1206338
- [4] S. Alama - G. TARANTELLO, On semilinear elliptic equations with indefinite nonlinearities, Calc. Var., 1 (1993), pp. 439-475. Zbl0809.35022MR1383913
- [5] A. Ambrosetti, Critical points and nonlinear variational problems, Bul. Soc. Math. France, 120 (1992). Zbl0766.49006MR1164129
- [6] S. Angenent, The shadowing lemma for elliptic PDE, in Dynamics of Infinite Dimensional Systems, S. N. Chow and J. K. Hale eds., F37(1987). Zbl0653.35030MR921893
- [7] P. Caldiroli - P. MONTECCHIARI, Homoclinic orbits for second order Hamiltonian systems with potential changing sign, Comm. Appl. Nonlinear Anal., 1 (1994), pp. 97-129. Zbl0867.70012MR1280118
- [8] V. Coti Zelati - I. Ekeland - E. Séré, A Variational approach to homoclinic orbits in Hamiltonian systems, Math. Ann., 288 (1990), pp. 133-160. Zbl0731.34050MR1070929
- [9] V. Coti Zelati - P.H. Rabinowitz, Homoclinic orbits for second order Hamiltonian systems possessing superquadratic potentials, J. Amer. Math. Soc., 4 (1991), pp. 693-727. Zbl0744.34045MR1119200
- [10] V. Coti Zelati - P.H. Rabinowitz, Homoclinic type solutions for a semilinear elliptic PDE on Rn, Comm. Pure Appl. Math., 45 (1992), pp. 1217-1269. Zbl0785.35029MR1181725
- [11] W.Y. Ding - W.M. Ni, On the existence of positive entire solutions of a semilinear elliptic equation, Arch. Rat. Mech. Anal., 91 (1986), pp. 283-308. Zbl0616.35029MR807816
- [12] M.J. Esteban - P.L. Lions, Existence and nonexistence results for semilinear elliptic problems in unbounded domains, Proc. Roy. Soc. Edinburgh, 93 (1982), pp. 1-14. Zbl0506.35035MR688279
- [13] M.K. Kwong, Uniqueness positive solutions of Δu - u + uP = 0 in Rn, Arch. Rat. Mech. Anal., 105 (1985), pp. 243-266. Zbl0676.35032
- [14] L. Lassoued, Periodic solution of a second order superquadratic system with change of sign of potential, J. Diff. Eq., 93(1991), pp. 1-18. Zbl0736.34041MR1122304
- [15] P.L. Lions, The concentration-compactness principle in the calculus of variations. The locally compact case, part 1, Ann. Inst. Henri Poincaré, 1 (1984), pp. 109-145. Zbl0541.49009MR778970
- [16] P.L. Lions, The concentration-compactness principle in the calculus of variations. The locally compact case, part 2, Ann. Inst. Henri Poincaré, 1 (1984), pp. 223-283. Zbl0704.49004MR778974
- [17] C. Miranda, Un'osservazione su un teorema di Brouwer, Boll. Unione Mat. Ital., 3 (1940), pp. 5-7. MR4775JFM66.0217.01
- [18] P. Montecchiari, Existence and multiplicity of homoclinic solutions for a class of asymptotically periodic second order Hamiltonian systems, Ann. Mat. Pura Appl. (to appear). See also: Multiplicity of homoclinic solutions for a class of asymptotically periodic second order Hamiltonian systems, Rend. Mat. Ace. Lincei, s. 9, 4 (1993), pp. 265-271. Zbl0802.34052MR1269616
- [19] P. Pucci - J. Serrin, The structure of the critical set in the mountain pass theorem, Tran. Am. Math. Soc., 299 (1987), pp. 115-132. Zbl0611.58019MR869402
- [20] P.H. Rabinowitz, Homoclinic orbits for a class of Hamiltonian systems, Proc. Roy. Soc. Edinburgh, 114-A (1990), pp. 33-38. Zbl0705.34054MR1051605
- [21] P.H. Rabinowitz, A note on a semilinear elliptic equation on Rm, in A tribute in honour of Giovanni Prodi, A. Ambrosetti and A. Marino eds., Quaderni Scuola Normale Superiore, Pisa (1991). Zbl0836.35045MR1205391
- [22] E. Sere, Existence of infinitely many homoclinic orbits in Hamiltonian systems, Math. Z., 209 (1992), pp. 27-42. Zbl0725.58017MR1143210
- [23] E. Sere, Looking for the Bernoulli shift, Ann. Inst. H. Poincaré. Anal. Non Linéaire, 10 (1993), pp. 561-590. Zbl0803.58013MR1249107
- [24] A. Weinstein, Bifurcations andHamilton's principle, Math. Z., 159 (1978), pp. 235-248. Zbl0366.58003MR501163
Citations in EuDML Documents
top- Francesca Alessio, Paolo Caldiroli, Piero Montecchiari, On the existence of infinitely many solutions for a class of semilinear elliptic equations in
- Francesca Alessio, Paolo Caldiroli, Piero Montecchiari, Genericity of the existence of infinitely many solutions for a class of semilinear elliptic equations in
- Francesca Alessio, Paolo Caldiroli, Piero Montecchiari, Infinitely many solutions for a class of semilinear elliptic equations in
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.