L'invariant de Godbillon-Vey

Étienne Ghys

Séminaire Bourbaki (1988-1989)

  • Volume: 31, page 155-181
  • ISSN: 0303-1179

How to cite

top

Ghys, Étienne. "L'invariant de Godbillon-Vey." Séminaire Bourbaki 31 (1988-1989): 155-181. <http://eudml.org/doc/110106>.

@article{Ghys1988-1989,
author = {Ghys, Étienne},
journal = {Séminaire Bourbaki},
keywords = {smooth foliation; Godbillon-Vey invariant; characteristic classes of foliations; localization of the Godbillon invariant; resilient leaves; growth; level of leaves; flow of weights; topological invariance},
language = {fre},
pages = {155-181},
publisher = {Société Mathématique de France},
title = {L'invariant de Godbillon-Vey},
url = {http://eudml.org/doc/110106},
volume = {31},
year = {1988-1989},
}

TY - JOUR
AU - Ghys, Étienne
TI - L'invariant de Godbillon-Vey
JO - Séminaire Bourbaki
PY - 1988-1989
PB - Société Mathématique de France
VL - 31
SP - 155
EP - 181
LA - fre
KW - smooth foliation; Godbillon-Vey invariant; characteristic classes of foliations; localization of the Godbillon invariant; resilient leaves; growth; level of leaves; flow of weights; topological invariance
UR - http://eudml.org/doc/110106
ER -

References

top
  1. [B1] R. Bott, Lectures on characteristic classes and foliations, Lect. Notes in Math.279 (1972), Springer-VerlagBerlin. Zbl0241.57010MR362335
  2. [B2] R. Bott, On characteristic classes in the framework of Gelfand-Fuks cohomology. Soc. Math. France, Astérisque32-33 (1976) 113-139. Zbl0328.57005MR402768
  3. [B3] R. Bott, On someformulasfor the characteristic classes of group actions, Lect. Notes in Math.652 (1978), 25-61, Springer Verlag, Berlin. Zbl0393.57011MR505649
  4. [CC1] J. Cantwell and L. Conlon, Poincaré-Bendixson theory for leaves of codimension one, Trans. Amer. Math. Soc.265 (1981) 181-209. Zbl0484.57015MR607116
  5. [CC2] J. Cantwell and L. Conlon, The dynamics of open foliated manifolds and a vanishing theorem for the Godbillon-Vey class, Advances in Math.53 (1984), 1-27. Zbl0552.57009MR748894
  6. [Conl] L. Conlon, Foliations and exotic classes, Lecture Notes. 
  7. [Co] A. Connes, Cyclic cohomology and the transverse fundamental class of a foliation., Geometric methods in operator algebras, Proceed.U.S.-Japan Seminar, Kyoto , editors H. Araki , E.G. Effros, 1986. Zbl0647.46054MR866491
  8. [D1] G. Duminy, L'invariant de Godbillon-Vey d'un feuilletage se localise sur les feuilles ressort, preprint Lille1982. 
  9. [D2] G. Duminy, Sur les cycles feuilletés de codimension un, manuscrit 1982. 
  10. [DS] G. Duminy et V. Sergiescu, Sur la nullité de l'invariant de Godbillon-Vey, C.R. Acad. Sci. Paris A292 (1981), 821-824. Zbl0473.57015MR622428
  11. [EK] A. El Kacimi, Sur la cohomologie feuilletée, Compositio Math.49 (1983), 195-215. Zbl0516.57017MR704391
  12. [F] D.B. Fuchs, Cohomology of infinite dimensional Lie algebras and characteristic classes of foliations, J. Soviet Math., 11 (1979) 922-980. Zbl0499.57001
  13. [FGG] D.B. Fuchs, A.M. Gabrielov, I.M. Gelfand, The Gauss-Bonnet theorem and the Atiyah-Patodi-Singer functionals for the characteristic classes offoliations, Topology15 (1976) 165-188. Zbl0347.57009MR431199
  14. [GF] I.M. Gelfand, D.B. Fuchs, Cohomologies of the Lie algebra of vector f ields of the circle, Funct. Anal.2 (1968) 342-343. 
  15. [G1] E. Ghys, Sur l'invariance topologique de la classe de Godbillon-Vey, Ann. Inst. Fourier, Grenoble37 (1987), 59-76. Zbl0633.58025MR927391
  16. [G2] E. Ghys, Flots d'Anosov dont les feuilletages stables sont différentiables, Ann. Scient. Ec. Norm. Sup.20 (1987) 251-270. Zbl0663.58025MR911758
  17. [GLW] E. Ghys, R. Langevin et P. Walczak, Entropie géométrique desfeuilletages, Acta Mathematica160 (1988), 105-142. Zbl0666.57021MR926526
  18. [GT] E. Ghys et T. Tsuboi, Différentiabilité des conjugaisons entre systèmes dynamiques de dimension l, Ann. Inst. Fourier, Grenoble, 38, 1 (1988), p. 215-244. Zbl0633.58018MR949007
  19. [GV] C. Godbillon et J. Vey, Un invariant des feuilletages de codimension 1, C.R.Acad. Sc. Paris, 273 (1971) 92-95. Zbl0215.24604MR283816
  20. [Hec] G. Hector, Architecture des feuilletages de classe C2, Astérisque107-108 (1983) 243- 258. Zbl0533.57014MR753140
  21. [HH] J. Heitsch and S. Hurder, Secondary classes, Weil measures and the geometry of foliations, J. Differential Geometry20 (1984) 291-309. Zbl0563.57011MR788282
  22. [Hel] M. Herman, The Godbillon-Vey invariant of foliations by planes of T3, Lecture Notes in Mathematics, Vol. 597, SpringerBerlin, 1977, 294-307. Zbl0366.57006MR451261
  23. [He2] M. Herman, Sur la conjugaison différentiable des difféomorphismes du cercle à des rotations, Publ. I.H.E.S.49 (1979) 5-223. Zbl0448.58019MR538680
  24. [Hul] S. Hurder, Global invariants for measured foliations, Trans. Amer. Math. Soc.280 (1983), 367-391. Zbl0551.57015MR712266
  25. [Hu2] S. Hurder, Foliation dynamics and leaf invariants, Comment. Math. Helv.60 (1985) 319-335. Zbl0604.57021MR800011
  26. [Hu3] S. Hurder, The Godbillon measure of amenable foliations, J. Differential Geom.23 (1986), 347-365. Zbl0605.57015MR852160
  27. [HK1] S. Hurder and A. Katok, Ergodic theory and Weil measures for foliations, Ann. of Math.126 (1987), 221-275. Zbl0645.57021MR908148
  28. [HK2] S. Hurder and A. Katok, Differentiability, rigidity and Godbillon-Vey classes for Anosov flows, preprint I.H.E.S.1987. Zbl0725.58034MR1087392
  29. [L] H.B. Lawson, Lectures on the quantitative theory of foliations, Nat. Sc. Foundation Regional Conf. Saint Louis 1985, Amer. Math. Soc.1977. Zbl0343.57014MR448368
  30. [Ma] J.N. Mather, Simplicity of certain groups of diffeomorphisms, Bull. Amer. Math. Soc.80 (1974) 271-273. Zbl0275.58007MR339268
  31. [Mi] Y. Mitsumatsu, A relation between the topological invariance of the Godbillon-Vey invariant and the differentiability of Anosov foliations, Advanced Studies in Pure Mathematics 5, University of Tokyo. Zbl0653.57018
  32. [MMT] T. Mizutani, S. Morita and T. Tsuboi, The Godbillon-Vey classes of codimension one foliations which are almost without holonomy, Ann. of Math.113 (1981) 515-527. Zbl0465.57010MR621014
  33. [MMT2] T. Mizutani, S. Morita and T. Tsuboi, On the cobordism classes of codimension one foliations which are almost without holonomy, Topology22 (1983) 325-343. Zbl0519.57019MR710106
  34. [MT] S. Morita and T. Tsuboi, The Godbillon-Vey class of codimension one foliations without holonomy, Topology19 (1980) 43-49. Zbl0435.57006MR559475
  35. [MP] R. Moussu et F. Pelletier, Sur le théorème de Poincaré-Bendixson, Ann. Inst. Fourier Grenoble14(1974),131-148. Zbl0273.57008MR358807
  36. [N] T. Nishimori, SRH-decompositions of codimension one foliations and the Godbillon-Vey class, Tohoku Math. J.32 (1980) 9-34. Zbl0413.57020MR567828
  37. [P1] J. Plante, Foliations with measure preserving holonomy, Ann. of Math.102 (1975) 327-361. Zbl0314.57018MR391125
  38. [Ra] G. Raby, Invariance des classes de Godbillon-Vey par C1-difféomorphismes, Ann. Inst. Fourier (Grenoble)38 (1988), 205-213. Zbl0596.57018MR949006
  39. [Re] G. Reeb, Sur certaines propriétés topologiques des variétés feuilletées, Act. Sc. et Ind.Hermann, Paris1952. Zbl0049.12602MR55692
  40. [RW] B.L. Reinhart and J.W. Wood, A metric formula for the Godbillon-Vey invariant for foliations, Proc. Amer. Math. Soc.38 (1973) 427-430. Zbl0263.57010MR310907
  41. [Sc] P. Schweitzer (editor), Some problems in foliation theory and related areas, Lecture Notes in Mathematics, vol. 652, Springer, Berlin1978, 247. Zbl0377.57001MR520547
  42. [Su] D. Sullivan, Cycles for the dynamical study of foliated manifolds and complex manifolds, Invent. Math.36 (1976) 225-255. Zbl0335.57015MR433464
  43. [Th1] W. Thurston, Non cobordant foliations of S3, Bulletin A.M.S.78 (1972) 511-514. Zbl0266.57004MR298692
  44. [Th2] W. Thurston, Foliations and groups of diffeomorphisms, Bull. A.M.S.80 (1974), 304-307. Zbl0295.57014MR339267
  45. [Ts1] T. Tsuboi, On 2-cycles of BDiff(S1) which are represented by foliated S1-bundles over T2, Ann. Inst. Fourier31-2 (1981) 1-59. Zbl0439.57018MR617240
  46. [Ts2] T. Tsuboi, Foliated cobordism classes of certain foliated S1-bundles over surfaces, Topology23 (1984), 303-310. Zbl0555.57011MR744853
  47. [Ts3] T. Tsuboi, On the homology of classifying spaces for foliated products, Advanced Studies in Pure Math.5, Foliations, 1985, 37-120. Zbl0674.57023MR877328
  48. [Ts4] T. Tsuboi, On the foliated products of class C1, preprint. MR1014925
  49. [Tsy] N. Tsuchiya, The Nishimori decompositions of codimension one foliations and the Godbillon-Vey classes, Tohoku Math. J.34 (1982) 343-365. Zbl0514.57007MR676114

Citations in EuDML Documents

top
  1. Alain Connes, Brisure de symétrie spontanée et géométrie du point de vue spectral
  2. Paul A. Schweitzer S.J., Claude Godbillon : l'homme et son travail mathématiques. Discours prononcé à l'ouverture du colloque par Paul A. Schweitzer, S. J.
  3. S. Hurder, Anatoly Katok, Differentiability, rigidity and Godbillon-Vey classes for Anosov flows
  4. Takashi Tsuboi, Area functionals and Godbillon-Vey cocycles
  5. Laurent Guieu, Nombre de rotation, structures géométriques sur un cercle et groupe de Bott-Virasoro
  6. Pierre Pansu, Le flot géodésique des variétés riemanniennes à courbure négative
  7. Georges Skandalis, Approche de la conjecture de Novikov par la cohomologie cyclique

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.