Solutions auto-similaires des équations de Navier-Stokes
M. Cannone; Y. Meyer; F. Planchon
Séminaire Équations aux dérivées partielles (Polytechnique) (1993-1994)
- page 1-10
Access Full Article
topHow to cite
topCannone, M., Meyer, Y., and Planchon, F.. "Solutions auto-similaires des équations de Navier-Stokes." Séminaire Équations aux dérivées partielles (Polytechnique) (1993-1994): 1-10. <http://eudml.org/doc/112096>.
@article{Cannone1993-1994,
author = {Cannone, M., Meyer, Y., Planchon, F.},
journal = {Séminaire Équations aux dérivées partielles (Polytechnique)},
keywords = {Navier-Stokes equation; self-similar solutions; uniqueness},
language = {fre},
pages = {1-10},
publisher = {Ecole Polytechnique, Centre de Mathématiques},
title = {Solutions auto-similaires des équations de Navier-Stokes},
url = {http://eudml.org/doc/112096},
year = {1993-1994},
}
TY - JOUR
AU - Cannone, M.
AU - Meyer, Y.
AU - Planchon, F.
TI - Solutions auto-similaires des équations de Navier-Stokes
JO - Séminaire Équations aux dérivées partielles (Polytechnique)
PY - 1993-1994
PB - Ecole Polytechnique, Centre de Mathématiques
SP - 1
EP - 10
LA - fre
KW - Navier-Stokes equation; self-similar solutions; uniqueness
UR - http://eudml.org/doc/112096
ER -
References
top- [1] P. Federbush.Navier and Stokes meet the wavelet, Commun. Math. Phys.155 (1993), 219-248. Zbl0795.35080MR1230026
- [2] Y. Giga, T. Miyakawa.Navier-Stokes flow in R3 with measures as initial vorticity and Morrey spaces, Comm. in PDE14(5) (1989), 577-618. Zbl0681.35072MR993821
- [3] T. Kato.Strong Lp solutions of the Navier-Stokes equation in Rn with applications to weak solutions, Math. Zeit.187 (1984), 471-480. Zbl0545.35073MR760047
- [4] M. Taylor.Analysis on Morrey spaces and applications to Navier-Stokes and other evolution equations, Comm. in PDE17 (1992), 1407-1456. Zbl0771.35047MR1187618
Citations in EuDML Documents
top- Jean-Yves Chemin, Propriétés lagrangiennes des solutions du système de Navier-Stokes incompressible
- Jean-Yves Chemin, Isabelle Gallagher, On the global wellposedness of the 3-D Navier–Stokes equations with large initial data
- Raphaël Danchin, Marius Paicu, Les théorèmes de Leray et de Fujita-Kato pour le système de Boussinesq partiellement visqueux
- Hammadi Abidi, Marius Paicu, Existence globale pour un fluide inhomogène
- Boris Haspot, Well-posedness for density-dependent incompressible fluids with non-Lipschitz velocity
- Jean-Yves Chemin, Ping Zhang, The role of oscillations in the global wellposedness of the 3-D incompressible anisotropic Navier-Stokes equations
- Piotr Biler, The Cauchy problem and self-similar solutions for a nonlinear parabolic equation
- Jean-Yves Chemin, Isabelle Gallagher, Wellposedness and stability results for the Navier-Stokes equations in
- Marco Cannone, Nombres de Reynolds, stabilité et Navier-Stokes
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.