Solutions auto-similaires des équations de Navier-Stokes

M. Cannone; Y. Meyer; F. Planchon

Séminaire Équations aux dérivées partielles (Polytechnique) (1993-1994)

  • page 1-10

How to cite

top

Cannone, M., Meyer, Y., and Planchon, F.. "Solutions auto-similaires des équations de Navier-Stokes." Séminaire Équations aux dérivées partielles (Polytechnique) (1993-1994): 1-10. <http://eudml.org/doc/112096>.

@article{Cannone1993-1994,
author = {Cannone, M., Meyer, Y., Planchon, F.},
journal = {Séminaire Équations aux dérivées partielles (Polytechnique)},
keywords = {Navier-Stokes equation; self-similar solutions; uniqueness},
language = {fre},
pages = {1-10},
publisher = {Ecole Polytechnique, Centre de Mathématiques},
title = {Solutions auto-similaires des équations de Navier-Stokes},
url = {http://eudml.org/doc/112096},
year = {1993-1994},
}

TY - JOUR
AU - Cannone, M.
AU - Meyer, Y.
AU - Planchon, F.
TI - Solutions auto-similaires des équations de Navier-Stokes
JO - Séminaire Équations aux dérivées partielles (Polytechnique)
PY - 1993-1994
PB - Ecole Polytechnique, Centre de Mathématiques
SP - 1
EP - 10
LA - fre
KW - Navier-Stokes equation; self-similar solutions; uniqueness
UR - http://eudml.org/doc/112096
ER -

References

top
  1. [1] P. Federbush.Navier and Stokes meet the wavelet, Commun. Math. Phys.155 (1993), 219-248. Zbl0795.35080MR1230026
  2. [2] Y. Giga, T. Miyakawa.Navier-Stokes flow in R3 with measures as initial vorticity and Morrey spaces, Comm. in PDE14(5) (1989), 577-618. Zbl0681.35072MR993821
  3. [3] T. Kato.Strong Lp solutions of the Navier-Stokes equation in Rn with applications to weak solutions, Math. Zeit.187 (1984), 471-480. Zbl0545.35073MR760047
  4. [4] M. Taylor.Analysis on Morrey spaces and applications to Navier-Stokes and other evolution equations, Comm. in PDE17 (1992), 1407-1456. Zbl0771.35047MR1187618

Citations in EuDML Documents

top
  1. Jean-Yves Chemin, Propriétés lagrangiennes des solutions du système de Navier-Stokes incompressible
  2. Jean-Yves Chemin, Isabelle Gallagher, On the global wellposedness of the 3-D Navier–Stokes equations with large initial data
  3. Raphaël Danchin, Marius Paicu, Les théorèmes de Leray et de Fujita-Kato pour le système de Boussinesq partiellement visqueux
  4. Hammadi Abidi, Marius Paicu, Existence globale pour un fluide inhomogène
  5. Boris Haspot, Well-posedness for density-dependent incompressible fluids with non-Lipschitz velocity
  6. Jean-Yves Chemin, Ping Zhang, The role of oscillations in the global wellposedness of the 3-D incompressible anisotropic Navier-Stokes equations
  7. Piotr Biler, The Cauchy problem and self-similar solutions for a nonlinear parabolic equation
  8. Jean-Yves Chemin, Isabelle Gallagher, Wellposedness and stability results for the Navier-Stokes equations in 𝐑 3
  9. Marco Cannone, Nombres de Reynolds, stabilité et Navier-Stokes

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.