Une approche élémentaire des théorèmes de décomposition de Williams
Séminaire de probabilités de Strasbourg (1986)
- Volume: 20, page 447-464
Access Full Article
topHow to cite
topLe Gall, Jean-François. "Une approche élémentaire des théorèmes de décomposition de Williams." Séminaire de probabilités de Strasbourg 20 (1986): 447-464. <http://eudml.org/doc/113564>.
@article{LeGall1986,
author = {Le Gall, Jean-François},
journal = {Séminaire de probabilités de Strasbourg},
keywords = {three-dimensional Bessel process; Galton-Watson branching process; Brownian local times},
language = {fre},
pages = {447-464},
publisher = {Springer - Lecture Notes in Mathematics},
title = {Une approche élémentaire des théorèmes de décomposition de Williams},
url = {http://eudml.org/doc/113564},
volume = {20},
year = {1986},
}
TY - JOUR
AU - Le Gall, Jean-François
TI - Une approche élémentaire des théorèmes de décomposition de Williams
JO - Séminaire de probabilités de Strasbourg
PY - 1986
PB - Springer - Lecture Notes in Mathematics
VL - 20
SP - 447
EP - 464
LA - fre
KW - three-dimensional Bessel process; Galton-Watson branching process; Brownian local times
UR - http://eudml.org/doc/113564
ER -
References
top- [1] Billingsley, P. : Convergence of probability measures. New-York, Wiley, 1968. Zbl0172.21201MR233396
- [2] Doob, J.L. : Conditional Brownian motion and the boundary limits of harmonic functions. Bull. Soc. Math. France85, 431-458 (1957). Zbl0097.34004MR109961
- [3] Dwass, M. : Branching processes in simple random walk. Proc. Amer. Math. Soc.51, 270-274 (1975). Zbl0312.60032MR370775
- [4] Ikeda, N. and Watanbe, S. : Stochastic differential equations and diffusion processes. North Holland Mathematical Library, Kodansha, 1981. Zbl0495.60005MR637061
- [5] Ito, K. and Mc Kean, H.P. : Diffusion processes and their sample paths. Berlin-Heidelberg- New-York, Springer, 1965. Zbl0127.09503
- [6] Jeulin, T. : Semi-martingales et grossissement d'une filtration. Lect. Notes in Math.833. Berlin-Heidelberg- New-York, Springer, 1980. Zbl0444.60002MR604176
- [7] Kawazu, K. and Watanabe, S. : Branching processes with immigration and related limit theorems. Theory Probab. Appl.16, 36-54 (1971). Zbl0242.60034MR290475
- [8] Knight, F.B. : Random walks and a sojourn density process of Brownian motion. Trans. Amer. Math. Soc.109, 56-86 (1963). Zbl0119.14604MR154337
- [9] Lamperti, J. : A new class of probability limit theorems. J. Math. Mech.11, 749-772 (1962). Zbl0107.35602MR148120
- [10] Le Gall, J.F. : Sur la mesure de Hausdorff de la courbe brownienne. Sém. Proba. XIX. Lect. Notes in Math. 1123, 297-313. Berlin-Heidelberg, New-York, Springer, 1985. Zbl0563.60071MR889491
- [11] Mc Kean, H.P. : Excursions of a non-singular diffusion. Z. Wahrsch. verw. Gebiete1, 230-239 (1963). Zbl0117.35903MR162282
- [12] Neveu, J. : Arbres et processus de Galton Watson. A paraître aux Annales de l'I.H.P. Zbl0601.60082
- [13] Neveu, J. : Communication personnelle.
- [14] Pitman, J.W. : One-dimensional Brownian motion and the three-dimensional Bessel process. Adv. Appl. Probab.7, 511-526 (1975). Zbl0332.60055MR375485
- [15] Pitman, J.W. and Rogers, L.C.G. : Markov functions. Ann. Probab.9, 573-582 (1981). Zbl0466.60070MR624684
- [16] Pitman, J.W. and Yor, M. : A decomposition of Bessel bridges. Z. Wahrsch. verw. Gebiete59, 425-457 (1982). Zbl0484.60062MR656509
- [17] Ray, D.B. : Sojourn times of diffusion processes Ill. J. Math.7, 615-630 (1963). Zbl0118.13403MR156383
- [18] Rogers, L.C.G.Williams characterization of the Brownian excursion law : proof and applicaitons. Sém. Proba. XV. Lect. Notes in Math.850, 227-250. Berlin-Heidelberg- New-York, Springer, 1981. Zbl0462.60078MR622566
- [19] Rogers, L.C.G. : Brownian local times and branching processes. Sém. Proba. XVIII. Lect. Notes in Math.1059, 42-55. Berlin-Heidelberg- New-York, Springer, 1984. Zbl0542.60080MR770947
- [20] Shiga, T. and Watanabe, S. : Bessel processes as a one-parameter family of diffusion processes. Z. Wahrsch. verw. Gebiete27, 37-46 (1973). Zbl0327.60047MR368192
- [21] Walsh, J.B. : Downcrossings and the Markov property of local time. Temps locaux. Astérisque52-53, p. 89-115 (1978).
- [22] Williams, D. : Decomposing the Brownian path. Bulll. Amer. Math. Soc.76, 871-873 (1970). Zbl0233.60066MR258130
- [23] Williams, D. : Path decomposition and continuity of local time for one-dimensional diffusions, I. Proc. London Math. Soc, Ser. 3, 28, 738-768 (1974). Zbl0326.60093MR350881
- [24] Williams. D. : Diffusions, Markov processes and martingales Vol. 1 : Foundations. New-York, Wiley, 1979. Zbl0402.60003MR531031
Citations in EuDML Documents
topNotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.