Une approche élémentaire des théorèmes de décomposition de Williams

Jean-François Le Gall

Séminaire de probabilités de Strasbourg (1986)

  • Volume: 20, page 447-464

How to cite

top

Le Gall, Jean-François. "Une approche élémentaire des théorèmes de décomposition de Williams." Séminaire de probabilités de Strasbourg 20 (1986): 447-464. <http://eudml.org/doc/113564>.

@article{LeGall1986,
author = {Le Gall, Jean-François},
journal = {Séminaire de probabilités de Strasbourg},
keywords = {three-dimensional Bessel process; Galton-Watson branching process; Brownian local times},
language = {fre},
pages = {447-464},
publisher = {Springer - Lecture Notes in Mathematics},
title = {Une approche élémentaire des théorèmes de décomposition de Williams},
url = {http://eudml.org/doc/113564},
volume = {20},
year = {1986},
}

TY - JOUR
AU - Le Gall, Jean-François
TI - Une approche élémentaire des théorèmes de décomposition de Williams
JO - Séminaire de probabilités de Strasbourg
PY - 1986
PB - Springer - Lecture Notes in Mathematics
VL - 20
SP - 447
EP - 464
LA - fre
KW - three-dimensional Bessel process; Galton-Watson branching process; Brownian local times
UR - http://eudml.org/doc/113564
ER -

References

top
  1. [1] Billingsley, P. : Convergence of probability measures. New-York, Wiley, 1968. Zbl0172.21201MR233396
  2. [2] Doob, J.L. : Conditional Brownian motion and the boundary limits of harmonic functions. Bull. Soc. Math. France85, 431-458 (1957). Zbl0097.34004MR109961
  3. [3] Dwass, M. : Branching processes in simple random walk. Proc. Amer. Math. Soc.51, 270-274 (1975). Zbl0312.60032MR370775
  4. [4] Ikeda, N. and Watanbe, S. : Stochastic differential equations and diffusion processes. North Holland Mathematical Library, Kodansha, 1981. Zbl0495.60005MR637061
  5. [5] Ito, K. and Mc Kean, H.P. : Diffusion processes and their sample paths. Berlin-Heidelberg- New-York, Springer, 1965. Zbl0127.09503
  6. [6] Jeulin, T. : Semi-martingales et grossissement d'une filtration. Lect. Notes in Math.833. Berlin-Heidelberg- New-York, Springer, 1980. Zbl0444.60002MR604176
  7. [7] Kawazu, K. and Watanabe, S. : Branching processes with immigration and related limit theorems. Theory Probab. Appl.16, 36-54 (1971). Zbl0242.60034MR290475
  8. [8] Knight, F.B. : Random walks and a sojourn density process of Brownian motion. Trans. Amer. Math. Soc.109, 56-86 (1963). Zbl0119.14604MR154337
  9. [9] Lamperti, J. : A new class of probability limit theorems. J. Math. Mech.11, 749-772 (1962). Zbl0107.35602MR148120
  10. [10] Le Gall, J.F. : Sur la mesure de Hausdorff de la courbe brownienne. Sém. Proba. XIX. Lect. Notes in Math. 1123, 297-313. Berlin-Heidelberg, New-York, Springer, 1985. Zbl0563.60071MR889491
  11. [11] Mc Kean, H.P. : Excursions of a non-singular diffusion. Z. Wahrsch. verw. Gebiete1, 230-239 (1963). Zbl0117.35903MR162282
  12. [12] Neveu, J. : Arbres et processus de Galton Watson. A paraître aux Annales de l'I.H.P. Zbl0601.60082
  13. [13] Neveu, J. : Communication personnelle. 
  14. [14] Pitman, J.W. : One-dimensional Brownian motion and the three-dimensional Bessel process. Adv. Appl. Probab.7, 511-526 (1975). Zbl0332.60055MR375485
  15. [15] Pitman, J.W. and Rogers, L.C.G. : Markov functions. Ann. Probab.9, 573-582 (1981). Zbl0466.60070MR624684
  16. [16] Pitman, J.W. and Yor, M. : A decomposition of Bessel bridges. Z. Wahrsch. verw. Gebiete59, 425-457 (1982). Zbl0484.60062MR656509
  17. [17] Ray, D.B. : Sojourn times of diffusion processes Ill. J. Math.7, 615-630 (1963). Zbl0118.13403MR156383
  18. [18] Rogers, L.C.G.Williams characterization of the Brownian excursion law : proof and applicaitons. Sém. Proba. XV. Lect. Notes in Math.850, 227-250. Berlin-Heidelberg- New-York, Springer, 1981. Zbl0462.60078MR622566
  19. [19] Rogers, L.C.G. : Brownian local times and branching processes. Sém. Proba. XVIII. Lect. Notes in Math.1059, 42-55. Berlin-Heidelberg- New-York, Springer, 1984. Zbl0542.60080MR770947
  20. [20] Shiga, T. and Watanabe, S. : Bessel processes as a one-parameter family of diffusion processes. Z. Wahrsch. verw. Gebiete27, 37-46 (1973). Zbl0327.60047MR368192
  21. [21] Walsh, J.B. : Downcrossings and the Markov property of local time. Temps locaux. Astérisque52-53, p. 89-115 (1978). 
  22. [22] Williams, D. : Decomposing the Brownian path. Bulll. Amer. Math. Soc.76, 871-873 (1970). Zbl0233.60066MR258130
  23. [23] Williams, D. : Path decomposition and continuity of local time for one-dimensional diffusions, I. Proc. London Math. Soc, Ser. 3, 28, 738-768 (1974). Zbl0326.60093MR350881
  24. [24] Williams. D. : Diffusions, Markov processes and martingales Vol. 1 : Foundations. New-York, Wiley, 1979. Zbl0402.60003MR531031

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.