Structure au bord des variétés à courbure négative

François Ledrappier

Séminaire de théorie spectrale et géométrie (1994-1995)

  • Volume: 13, page 97-122
  • ISSN: 1624-5458

How to cite

top

Ledrappier, François. "Structure au bord des variétés à courbure négative." Séminaire de théorie spectrale et géométrie 13 (1994-1995): 97-122. <http://eudml.org/doc/114385>.

@article{Ledrappier1994-1995,
author = {Ledrappier, François},
journal = {Séminaire de théorie spectrale et géométrie},
keywords = {Hölder structure on the boundary sphere; negative curvature; periods of a cocycle; Gibbs current; Hölderian cocycle; probability measure; Busemann cocycle},
language = {fre},
pages = {97-122},
publisher = {Institut Fourier},
title = {Structure au bord des variétés à courbure négative},
url = {http://eudml.org/doc/114385},
volume = {13},
year = {1994-1995},
}

TY - JOUR
AU - Ledrappier, François
TI - Structure au bord des variétés à courbure négative
JO - Séminaire de théorie spectrale et géométrie
PY - 1994-1995
PB - Institut Fourier
VL - 13
SP - 97
EP - 122
LA - fre
KW - Hölder structure on the boundary sphere; negative curvature; periods of a cocycle; Gibbs current; Hölderian cocycle; probability measure; Busemann cocycle
UR - http://eudml.org/doc/114385
ER -

References

top
  1. [1] D.V. ANOSOV. _ Geodesic flows on closed Riemannian manifolds with negative curvature, Proc. Steklov Inst. of Math. 90, 1967. Zbl0176.19101MR224110
  2. [2] D.V. ANOSOV & Ya. SINAI. _ Some smooth ergodic systems, Russian Math. Surveys 22-5 ( 1967), 103-167. Zbl0177.42002
  3. [3] F. BONAHON. _ The geometry of Teichmüller spaces via geodesic currents, Invent. Math. 92 ( 1988), 139-162. Zbl0653.32022MR931208
  4. [4] M. BOURDON. _ Structure conforme au bord et flot géodésique d'un CAT(-1)-espace, L'Enseignement Mathématique 41 ( 1995), 63-102. Zbl0871.58069MR1341941
  5. [5] M. BOURDON. _ Au bord de certains polyèdres hyperboliques, Ann. Inst. Fourier (Grenoble) 45 ( 1995), 119-141. Zbl0820.20043MR1324127
  6. [6] R. BOWEN. _ The equidistribution of closed geodesics, Amer. J. Math. 94 ( 1972), 413-423. Zbl0249.53033MR315742
  7. [7] R. BOWEN. _ Periodic orbits for hyperbolic flows, Amer. J. Math. 94 ( 1972), 1-30. Zbl0254.58005MR298700
  8. [8] R. BOWEN & D. RUELLE. _ The ergodic theory for axiom A flows, Invent. Math. 29 ( 1975), 181-202. Zbl0311.58010MR380889
  9. [9] E. CAWLEY. _ Geometry of deformations of an Anosov flow on a 3-manifold, Publications du CIRM, Résumés des colloques 5 ( 1993), 73. 
  10. [10] C. CROKE. _ Rigidity for surfaces of non positive curvature, Comment. Math. Helv. 65 ( 1990), 150-169. Zbl0704.53035MR1036134
  11. [11] E. GHYS & P. de la HARPE. _ Sur les groupes hyperboliques d'après Mikhael Gromov, Birkhäuser, 1990. Zbl0731.20025MR1086648
  12. [12] M. GROMOV. _ Three remarks on geodesic dynamics and fundamental group, unpublished. Zbl1002.53028
  13. [13] U. HAMENSTÄDT. _ A new description of the Bowen-Margulis measure, Ergod. Th. & Dynam. Sys. 9 ( 1989), 455-464. Zbl0722.58029MR1016663
  14. [14] U. HAMENSTÄDT. _ Entropy rigidity of locally symmetric spaces of negative curvature, Ann. of Math. 131 ( 1990), 35-51. Zbl0699.53049MR1038357
  15. [15] U. HAMENSTÄDT. _ Time preserving conjugacies of geodesic flows, Ergod. Th. & Dynam. Sys. 12 ( 1992), 67-74. Zbl0766.58045MR1162399
  16. [16] U. HAMENSTÄDT. _ Regularity at infinity of compact negatively curved manifolds, Ergod. Th. & Dynam. Sys. 14 ( 1994), 493-514. Zbl0820.53039MR1293405
  17. [17] U. HAMENSTÄDT. _ Harmonic measures realized as Hausdorff measures, preprint Bonn, 1995. MR1477033
  18. [18] U. HAMENSTÄDT. _ Cocycles, Hausdorff measures and cross ratios, preprint Bonn, 1995. Zbl0906.58035MR1477033
  19. [19] J.-L. JOURNÉ. _ On a regularity problem occuring in connection with Anosov diffeomorphisms, Comm. Math. Phys. 106 ( 1986), 345-351. Zbl0603.58019MR855316
  20. [20] V. KAIMANOVICH. _ Invariant measures of the geodesic flow and measures at infinity on negatively curved manifolds, Ann. Inst. H. Poincare Phys. Theor. 53 ( 1990), 361-393. Zbl0725.58026MR1096098
  21. [21] A. KATOK. _ Entropy and closed geodesics, Ergod. Th. & Dynam. Sys. 2 ( 1982), 339-365. Zbl0525.58027MR721728
  22. [22] F. LEDRAPPIER. _ Harmonic measures and Bowen-Margulis measures, Israel J. Math. 71 ( 1990), 275-287. Zbl0728.53029MR1088820
  23. [23] F. LEDRAPPIER. _ Harmonic 1-forms on the stable foliation, Bol. Soc. Brasil Mat. 25 ( 1994), 121-138. Zbl0821.58034MR1306557
  24. [24] F. LEDRAPPIER. _ A renewal theorem for the distance in negative curvature, Proc. Symp. Pure Math. 57 ( 1995), 351-360. Zbl0842.60080MR1335481
  25. [25] F. LEDRAPPIER & L.-S. YOUNG. _ The metric entropy of diffeomorphisms, part I, Ann. of Math. 122 ( 1985), 509-539. Zbl0605.58028MR819556
  26. [26] A. LIVSIC. _ Homology properties of Y-Systems, Math. Notes 10 ( 1971), 754-757. Zbl0235.58010MR293669
  27. [27] R. de la LLAVE, J.-M. MARCO & R. MORIYON. _ Canonical perturbation theory of Anosov Systems and regularity results for Livsic cohomology equation, Ann. of Math. 123 ( 1986), 536-611. Zbl0603.58016MR840722
  28. [28] J.-P. OTAL. _ Le spectre marqué des longueurs des surfaces à courbure négative, Ann. Math. 131 ( 1990), 151-162. Zbl0699.58018MR1038361
  29. [29] J.-P. OTAL. _ Surla géométrie symplectique de l'espace des géodésiques d'une variété à courbure négative, Rev. Math. Jberoam 8 ( 1992), 441-456. Zbl0777.53042MR1202417
  30. [30] P. PANSU. _ Métriques de Carnot-Carathéodory et quasi-isométries des espaces symétriques de rang un, Ann. of Math. 129 ( 1989), 1-60. Zbl0678.53042MR979599
  31. [31] P. PANSU. _ Dimension conforme et sphère à l'infini des variétés à courbure négative, Annales Acad. Sci. Fennicae, Series AI Mathematica 14 ( 1989), 177-212. Zbl0722.53028MR1024425
  32. [32] W. PARRY & M. POLLICOTT. _ Zeta functions and the periodic orbits structure of hyperbolic dynamics, Asterisque 187-188 ( 1990),. Zbl0726.58003MR1085356
  33. [33] S. PATTERSON. _ The limit set of a Fuchsian group. Acta Math. 136 ( 1976), 241-273. Zbl0336.30005MR450547
  34. [34] D. SULLIVAN. _ The ergodic theory at infinity of a discrete group of hyperbolic isometries, Ann. of Math. Stud. 97 ( 1981), 465-197. Zbl0567.58015MR624833
  35. [35] D. SULLIVAN. _ The density at infinity of a discrete group of hyperbolic motions, Pub. Math. IHES 50 ( 1979), 171-209. Zbl0439.30034MR556586
  36. [36] P. WALTERS. _ An introduction to ergodic theory, G.T.M. 79 Springer Berlin, 1982. Zbl0475.28009MR648108
  37. [37] C.-B. YUE. _ Rigidity and dynamics around manifolds of negative curvature, Math. Research Letters 1 ( 1994), 123-147. Zbl0840.53027MR1266752

Citations in EuDML Documents

top
  1. Martine Babillot, Géodésiques et horocycles sur le revêtement d'homologie d'une surface hyperbolique
  2. Barbara Schapira, Propriétés ergodiques du flot horocyclique d'une surface hyperbolique géométriquement finie
  3. Olivier Mohsen, Le bas du spectre d'une variété hyperbolique est un point selle
  4. François Labourie, Cross ratios, surface groups, P S L ( n , 𝐑 ) and diffeomorphisms of the circle
  5. Jean-Claude Picaud, Cohomologie bornée des surfaces et courants géodésiques
  6. François Labourie, Cross ratios, Anosov representations and the energy functional on Teichmüller space

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.