Brolin's theorem for curves in two complex dimensions

Charles Favre[1]; Mattias Jonsson[2]

  • [1] Université Paris VII, UFR de Mathématiques, Équipe Géométrie et Dynamique, 75251 Paris Cedex 05 (France)
  • [2] University of Michigan, Department of Mathematics, Ann Arbor MI 48109-1109 (USA)

Annales de l’institut Fourier (2003)

  • Volume: 53, Issue: 5, page 1461-1501
  • ISSN: 0373-0956

Abstract

top
Given a holomorphic mapping f : 2 2 of degree d 2 we give sufficient conditions on a positive closed (1,1) current of S of unit mass under which d - n f n * S converges to the Green current as n . We also conjecture necessary condition for the same convergence.

How to cite

top

Favre, Charles, and Jonsson, Mattias. "Brolin's theorem for curves in two complex dimensions." Annales de l’institut Fourier 53.5 (2003): 1461-1501. <http://eudml.org/doc/116078>.

@article{Favre2003,
abstract = {Given a holomorphic mapping $f:\{\mathbb \{P\}\}^2\rightarrow \{\mathbb \{P\}\}^2$ of degree $d\ge 2$ we give sufficient conditions on a positive closed (1,1) current of $S$ of unit mass under which $d^\{-n\}f^\{n*\}S$ converges to the Green current as $n\rightarrow \infty $. We also conjecture necessary condition for the same convergence.},
affiliation = {Université Paris VII, UFR de Mathématiques, Équipe Géométrie et Dynamique, 75251 Paris Cedex 05 (France); University of Michigan, Department of Mathematics, Ann Arbor MI 48109-1109 (USA)},
author = {Favre, Charles, Jonsson, Mattias},
journal = {Annales de l’institut Fourier},
keywords = {holomorphic dynamics; currents; Lelong numbers; equidistribution; Kilseman numbers; volume estimates; asymptotic multiplicities; Kiselman numbers},
language = {eng},
number = {5},
pages = {1461-1501},
publisher = {Association des Annales de l'Institut Fourier},
title = {Brolin's theorem for curves in two complex dimensions},
url = {http://eudml.org/doc/116078},
volume = {53},
year = {2003},
}

TY - JOUR
AU - Favre, Charles
AU - Jonsson, Mattias
TI - Brolin's theorem for curves in two complex dimensions
JO - Annales de l’institut Fourier
PY - 2003
PB - Association des Annales de l'Institut Fourier
VL - 53
IS - 5
SP - 1461
EP - 1501
AB - Given a holomorphic mapping $f:{\mathbb {P}}^2\rightarrow {\mathbb {P}}^2$ of degree $d\ge 2$ we give sufficient conditions on a positive closed (1,1) current of $S$ of unit mass under which $d^{-n}f^{n*}S$ converges to the Green current as $n\rightarrow \infty $. We also conjecture necessary condition for the same convergence.
LA - eng
KW - holomorphic dynamics; currents; Lelong numbers; equidistribution; Kilseman numbers; volume estimates; asymptotic multiplicities; Kiselman numbers
UR - http://eudml.org/doc/116078
ER -

References

top
  1. E. Bedford, J. Smillie, Fatou-Bieberbach domains arising from polynomial diffeomorphisms, Indiana Math. J 40 (1991), 789-792 Zbl0739.32027MR1119197
  2. J.-Y. Briend, J. Duval, Deux caractérisations de la mesure d’équilibre d’un endomorphisme de P k ( C )  Zbl1010.37004
  3. H. Brolin, Invariant sets under iteration of rational functions, Ark. Mat 6 (1965), 103-144 Zbl0127.03401MR194595
  4. D. Cerveau, A. Lins, Neto, [unknown], Bol. Soc. Brasil. Mat. (N.S.) 31 (2000), 155-161 Zbl0967.32022MR1785266
  5. M. Dabija, Algebraic and geometric dynamics in several complex variables, (2000) 
  6. M. Dabija, M. Jonsson, Holomorphic mappings of P 2 preserving a family of curves Zbl1159.32009
  7. J.-P. Demailly, Monge-Ampère operators, Lelong numbers and intersection theory., Complex analysis and geometry (1993), 115-193, Plenum Press Zbl0792.32006
  8. J.-P. Demailly, Pseudoconvex-concave duality and regularization of currents., Several complex variables (Berkeley, CA, 1995-1996) (1999), 233-271, Cambridge Univ. Press, Cambridge Zbl0960.32011
  9. C. Favre, Note on pull-back and Lelong number of currents, Bull. Soc. Math. France 127 (1999), 445-458 Zbl0937.32005MR1724404
  10. C. Favre, Dynamique des applications rationnelles, (2000) 
  11. C. Favre, Multiplicity of holomorphic functions, Math. Ann 316 (2000), 355-378 Zbl0948.32020MR1741274
  12. C. Favre, V. Guedj, Dynamique des applications rationnelles des espaces multiprojectifs, Indiana Math. J. 50 (2001), 881-934 Zbl1046.37026MR1871393
  13. J. E. FornÆss, N. Sibony, Complex Hénon mappings in C 2 and Fatou-Bieberbach domains, Duke Math. J. 65 (1992), 345-380 Zbl0761.32015MR1150591
  14. J. E. Forn, N. Sibony, Complex dynamics in higher dimension., Complex Potential Theory (1994), 131-186, Kluwer, Dordrecht 
  15. J. E. Forn, N. Sibony, Complex dynamics in higher dimension I, Astérisque 222 (1994), 201-231 Zbl0813.58030MR1285389
  16. J. E. Forn, N. Sibony, Complex dynamics in higher dimension II., Modern Methods in Complex Analysis 137 (1995), 135-182, Princeton University Press Zbl0847.58059
  17. A. Freire, A. Lopez, R. Mañé, An invariant measure for rational maps, Bol. Soc. Bras. Mat. 14 (1983), 45-62 Zbl0568.58027MR736568
  18. L. Hörmander, Introduction to complex analysis in several variables, (1990), North Holland Zbl0685.32001MR1045639
  19. C. O. Kiselman, Attenuating the singularities of plurisubharmonic functions, Ann. Polon. Math 60 (1994), 173-197 Zbl0827.32016MR1301603
  20. C. O. Kiselman, Ensembles de sous-niveau et images inverses des fonctions plurisousharmoniques, Bull. Sci. Math. 124 (2000), 75-92 Zbl0955.32025MR1742495
  21. M. Klimek, Pluripotential theory, (1991), Oxford Science Publications Zbl0742.31001MR1150978
  22. S., Introduction to complex analytic geometry, (1991), Birkhäuser Verlag, Basel Zbl0747.32001MR1131081
  23. M. Lyubich, Entropy properties of rational endomorphisms of the Riemann sphere, Ergodic Theory Dynam. Systems 3 (1983), 351-385 Zbl0537.58035MR741393
  24. S.K. Mimouni, Singularités des fonctions plurisousharmoniques et courants de Liouville, (2001) 
  25. A. Russakovskii, B. Shiffman, Value distribution for sequences of rational mappings and complex dynamics, Indiana Univ. Math. J 46 (1997), 897-932 Zbl0901.58023MR1488341
  26. B. Shiffman, M. Shishikura, T. Ueda, Totally invariant curves on P 2  
  27. H. Skoda, Sous-ensembles analytiques d’ordre fini ou infini dans C n , Bull. Soc. Math. France 100 (1972), 353-408 Zbl0246.32009MR352517

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.