Brolin's theorem for curves in two complex dimensions
Charles Favre[1]; Mattias Jonsson[2]
- [1] Université Paris VII, UFR de Mathématiques, Équipe Géométrie et Dynamique, 75251 Paris Cedex 05 (France)
- [2] University of Michigan, Department of Mathematics, Ann Arbor MI 48109-1109 (USA)
Annales de l’institut Fourier (2003)
- Volume: 53, Issue: 5, page 1461-1501
- ISSN: 0373-0956
Access Full Article
topAbstract
topHow to cite
topFavre, Charles, and Jonsson, Mattias. "Brolin's theorem for curves in two complex dimensions." Annales de l’institut Fourier 53.5 (2003): 1461-1501. <http://eudml.org/doc/116078>.
@article{Favre2003,
abstract = {Given a holomorphic mapping $f:\{\mathbb \{P\}\}^2\rightarrow \{\mathbb \{P\}\}^2$ of degree $d\ge 2$ we give
sufficient conditions on a positive closed (1,1) current of $S$ of unit mass under which
$d^\{-n\}f^\{n*\}S$ converges to the Green current as $n\rightarrow \infty $. We also conjecture
necessary condition for the same convergence.},
affiliation = {Université Paris VII, UFR de Mathématiques, Équipe Géométrie et Dynamique, 75251 Paris Cedex 05 (France); University of Michigan, Department of Mathematics, Ann Arbor MI 48109-1109 (USA)},
author = {Favre, Charles, Jonsson, Mattias},
journal = {Annales de l’institut Fourier},
keywords = {holomorphic dynamics; currents; Lelong numbers; equidistribution; Kilseman numbers; volume estimates; asymptotic multiplicities; Kiselman numbers},
language = {eng},
number = {5},
pages = {1461-1501},
publisher = {Association des Annales de l'Institut Fourier},
title = {Brolin's theorem for curves in two complex dimensions},
url = {http://eudml.org/doc/116078},
volume = {53},
year = {2003},
}
TY - JOUR
AU - Favre, Charles
AU - Jonsson, Mattias
TI - Brolin's theorem for curves in two complex dimensions
JO - Annales de l’institut Fourier
PY - 2003
PB - Association des Annales de l'Institut Fourier
VL - 53
IS - 5
SP - 1461
EP - 1501
AB - Given a holomorphic mapping $f:{\mathbb {P}}^2\rightarrow {\mathbb {P}}^2$ of degree $d\ge 2$ we give
sufficient conditions on a positive closed (1,1) current of $S$ of unit mass under which
$d^{-n}f^{n*}S$ converges to the Green current as $n\rightarrow \infty $. We also conjecture
necessary condition for the same convergence.
LA - eng
KW - holomorphic dynamics; currents; Lelong numbers; equidistribution; Kilseman numbers; volume estimates; asymptotic multiplicities; Kiselman numbers
UR - http://eudml.org/doc/116078
ER -
References
top- E. Bedford, J. Smillie, Fatou-Bieberbach domains arising from polynomial diffeomorphisms, Indiana Math. J 40 (1991), 789-792 Zbl0739.32027MR1119197
- J.-Y. Briend, J. Duval, Deux caractérisations de la mesure d’équilibre d’un endomorphisme de Zbl1010.37004
- H. Brolin, Invariant sets under iteration of rational functions, Ark. Mat 6 (1965), 103-144 Zbl0127.03401MR194595
- D. Cerveau, A. Lins, Neto, [unknown], Bol. Soc. Brasil. Mat. (N.S.) 31 (2000), 155-161 Zbl0967.32022MR1785266
- M. Dabija, Algebraic and geometric dynamics in several complex variables, (2000)
- M. Dabija, M. Jonsson, Holomorphic mappings of preserving a family of curves Zbl1159.32009
- J.-P. Demailly, Monge-Ampère operators, Lelong numbers and intersection theory., Complex analysis and geometry (1993), 115-193, Plenum Press Zbl0792.32006
- J.-P. Demailly, Pseudoconvex-concave duality and regularization of currents., Several complex variables (Berkeley, CA, 1995-1996) (1999), 233-271, Cambridge Univ. Press, Cambridge Zbl0960.32011
- C. Favre, Note on pull-back and Lelong number of currents, Bull. Soc. Math. France 127 (1999), 445-458 Zbl0937.32005MR1724404
- C. Favre, Dynamique des applications rationnelles, (2000)
- C. Favre, Multiplicity of holomorphic functions, Math. Ann 316 (2000), 355-378 Zbl0948.32020MR1741274
- C. Favre, V. Guedj, Dynamique des applications rationnelles des espaces multiprojectifs, Indiana Math. J. 50 (2001), 881-934 Zbl1046.37026MR1871393
- J. E. FornÆss, N. Sibony, Complex Hénon mappings in and Fatou-Bieberbach domains, Duke Math. J. 65 (1992), 345-380 Zbl0761.32015MR1150591
- J. E. Forn, N. Sibony, Complex dynamics in higher dimension., Complex Potential Theory (1994), 131-186, Kluwer, Dordrecht
- J. E. Forn, N. Sibony, Complex dynamics in higher dimension I, Astérisque 222 (1994), 201-231 Zbl0813.58030MR1285389
- J. E. Forn, N. Sibony, Complex dynamics in higher dimension II., Modern Methods in Complex Analysis 137 (1995), 135-182, Princeton University Press Zbl0847.58059
- A. Freire, A. Lopez, R. Mañé, An invariant measure for rational maps, Bol. Soc. Bras. Mat. 14 (1983), 45-62 Zbl0568.58027MR736568
- L. Hörmander, Introduction to complex analysis in several variables, (1990), North Holland Zbl0685.32001MR1045639
- C. O. Kiselman, Attenuating the singularities of plurisubharmonic functions, Ann. Polon. Math 60 (1994), 173-197 Zbl0827.32016MR1301603
- C. O. Kiselman, Ensembles de sous-niveau et images inverses des fonctions plurisousharmoniques, Bull. Sci. Math. 124 (2000), 75-92 Zbl0955.32025MR1742495
- M. Klimek, Pluripotential theory, (1991), Oxford Science Publications Zbl0742.31001MR1150978
- S., Introduction to complex analytic geometry, (1991), Birkhäuser Verlag, Basel Zbl0747.32001MR1131081
- M. Lyubich, Entropy properties of rational endomorphisms of the Riemann sphere, Ergodic Theory Dynam. Systems 3 (1983), 351-385 Zbl0537.58035MR741393
- S.K. Mimouni, Singularités des fonctions plurisousharmoniques et courants de Liouville, (2001)
- A. Russakovskii, B. Shiffman, Value distribution for sequences of rational mappings and complex dynamics, Indiana Univ. Math. J 46 (1997), 897-932 Zbl0901.58023MR1488341
- B. Shiffman, M. Shishikura, T. Ueda, Totally invariant curves on
- H. Skoda, Sous-ensembles analytiques d’ordre fini ou infini dans , Bull. Soc. Math. France 100 (1972), 353-408 Zbl0246.32009MR352517
Citations in EuDML Documents
top- Vincent Guedj, Decay of volumes under iteration of meromorphic mappings
- Charles Favre, Mattias Jonsson, Eigenvaluations
- Tien-Cuong Dinh, Nessim Sibony, Equidistribution towards the Green current for holomorphic maps
- William Gignac, Equidistribution of preimages over nonarchimedean fields for maps of good reduction
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.