Two Families of Mixed Finite Elements for Second Order Elliptic Problems.

F. Brezzi; J., Jr. Douglas; L.D. Marini

Numerische Mathematik (1985)

  • Volume: 47, page 217-236
  • ISSN: 0029-599X; 0945-3245/e

How to cite

top

Brezzi, F., Douglas, J., Jr., and Marini, L.D.. "Two Families of Mixed Finite Elements for Second Order Elliptic Problems.." Numerische Mathematik 47 (1985): 217-236. <http://eudml.org/doc/133032>.

@article{Brezzi1985,
author = {Brezzi, F., Douglas, J., Jr., Marini, L.D.},
journal = {Numerische Mathematik},
keywords = {mixed finite elements; asymptotic errors; Raviart-Thomas-Nedelec spaces; computational efficiency},
pages = {217-236},
title = {Two Families of Mixed Finite Elements for Second Order Elliptic Problems.},
url = {http://eudml.org/doc/133032},
volume = {47},
year = {1985},
}

TY - JOUR
AU - Brezzi, F.
AU - Douglas, J., Jr.
AU - Marini, L.D.
TI - Two Families of Mixed Finite Elements for Second Order Elliptic Problems.
JO - Numerische Mathematik
PY - 1985
VL - 47
SP - 217
EP - 236
KW - mixed finite elements; asymptotic errors; Raviart-Thomas-Nedelec spaces; computational efficiency
UR - http://eudml.org/doc/133032
ER -

Citations in EuDML Documents

top
  1. Adrian J. Lew, Matteo Negri, Optimal convergence of a discontinuous-Galerkin-based immersed boundary method
  2. Adrian J. Lew, Matteo Negri, Optimal convergence of a discontinuous-Galerkin-based immersed boundary method
  3. M. R. Swager, Y. C. Zhou, Genetic Exponentially Fitted Method for Solving Multi-dimensional Drift-diffusion Equations
  4. Lourenco Beirão Da Veiga, A mimetic discretization method for linear elasticity
  5. Zhangxin Chen, Analysis of mixed methods using conforming and nonconforming finite element methods
  6. Juan Enrique Santos, Ernesto Jorge Oreña, Elastic wave propagation in fluid-saturated porous media. Part II. The Galerkin procedures
  7. P. Peisker, D. Braess, Uniform convergence of mixed interpolated elements for Reissner-Mindlin plates
  8. Gabriel N. Gatica, Analysis of a new augmented mixed finite element method for linear elasticity allowing ℝ𝕋 0 - 1 - 0 approximations
  9. Zhangxin Chen, Expanded mixed finite element methods for quasilinear second order elliptic problems, II
  10. Jason S. Howell, Noel J. Walkington, Dual-mixed finite element methods for the Navier-Stokes equations

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.