Dualité relative en géométrie analytique complexe.

J.P. Ramis; G. Ruget; J.L. Verdier

Inventiones mathematicae (1971)

  • Volume: 13, page 261-283
  • ISSN: 0020-9910; 1432-1297/e

How to cite

top

Ramis, J.P., Ruget, G., and Verdier, J.L.. "Dualité relative en géométrie analytique complexe.." Inventiones mathematicae 13 (1971): 261-283. <http://eudml.org/doc/142096>.

@article{Ramis1971,
author = {Ramis, J.P., Ruget, G., Verdier, J.L.},
journal = {Inventiones mathematicae},
pages = {261-283},
title = {Dualité relative en géométrie analytique complexe.},
url = {http://eudml.org/doc/142096},
volume = {13},
year = {1971},
}

TY - JOUR
AU - Ramis, J.P.
AU - Ruget, G.
AU - Verdier, J.L.
TI - Dualité relative en géométrie analytique complexe.
JO - Inventiones mathematicae
PY - 1971
VL - 13
SP - 261
EP - 283
UR - http://eudml.org/doc/142096
ER -

Citations in EuDML Documents

top
  1. Gabriel Ruget, Complexe dualisant et résidus
  2. Bernd Siebert, Algebraic and symplectic Gromov-Witten invariants coincide
  3. Morihiko Saito, Induced 𝒟 -modules and differential complexes
  4. Jean-Pierre Ramis, Dimension cohomologique locale des modules fuchsiens
  5. Andrew Markoe, Runge families and inductive limits of Stein spaces
  6. Alessandro Silva, Rungescher Satz and a condition for Steiness for the limit of an increasing sequence of Stein spaces
  7. Siegmund Kosarew, Thomas Peternell, Formal cohomology, analytic cohomology and non-algebraic manifolds
  8. J. P. Ramis, Théorèmes de séparation et de finitude pour l’homologie et la cohomologie des espaces ( p , q ) -convexes-concaves
  9. J. P. Ramis, Théorèmes de séparation et de finitude pour l’homologie et la cohomologie des espaces ( p , q ) -convexes-concaves

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.