On Whittaker Vectors and Representation Theory.

Bertram Kostant

Inventiones mathematicae (1978)

  • Volume: 48, page 101-184
  • ISSN: 0020-9910; 1432-1297/e

How to cite

top

Kostant, Bertram. "On Whittaker Vectors and Representation Theory.." Inventiones mathematicae 48 (1978): 101-184. <http://eudml.org/doc/142586>.

@article{Kostant1978,
author = {Kostant, Bertram},
journal = {Inventiones mathematicae},
keywords = {Complex Semisimple Lie Algebra; Nilradical; Borel Subalgebra; Whittaker Vector; Irreducible Representations of a Semisimple Lie Group; Whittaker Models; Generalized Toda Lattice Quantized System; Whittaker Modules},
pages = {101-184},
title = {On Whittaker Vectors and Representation Theory.},
url = {http://eudml.org/doc/142586},
volume = {48},
year = {1978},
}

TY - JOUR
AU - Kostant, Bertram
TI - On Whittaker Vectors and Representation Theory.
JO - Inventiones mathematicae
PY - 1978
VL - 48
SP - 101
EP - 184
KW - Complex Semisimple Lie Algebra; Nilradical; Borel Subalgebra; Whittaker Vector; Irreducible Representations of a Semisimple Lie Group; Whittaker Models; Generalized Toda Lattice Quantized System; Whittaker Modules
UR - http://eudml.org/doc/142586
ER -

Citations in EuDML Documents

top
  1. Guilnard Sadaka, [unknown]
  2. Dinakar Ramakrishnan, Multiplicity one for the Gelfand-Graev representation of a linear group
  3. Eric Stade, The reciprocal of the beta function and G L ( n , ) Whittaker functions
  4. Taku Ishii, A remark on Whittaker functions on SL ( n , )
  5. Aboubeker Zahid, Les endomorphismes k -finis des modules de Whittaker
  6. David H. Collingwood, Whittaker models, nilpotent orbits and the asymptotics of Harish-Chandra modules
  7. Hisayosi Matumoto, C - -Whittaker vectors corresponding to a principal nilpotent orbit of a real reductive linear Lie group, and wave front sets
  8. Jim W. Cogdell, Igor I. Piatetski-Shapiro, Converse theorems for G L n
  9. Hisayosi Matumoto, C - -Whittaker vectors for complex semisimple Lie groups, wave front sets, and Goldie rank polynomial representations

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.