F-Isocrystales and De Rham Cohomology. I.
Inventiones mathematicae (1983)
- Volume: 72, page 159-200
- ISSN: 0020-9910; 1432-1297/e
Access Full Article
topHow to cite
topBerthelot, P., and Ogus, A.. "F-Isocrystales and De Rham Cohomology. I.." Inventiones mathematicae 72 (1983): 159-200. <http://eudml.org/doc/143016>.
@article{Berthelot1983,
author = {Berthelot, P., Ogus, A.},
journal = {Inventiones mathematicae},
keywords = {relative crystalline cohomology sheaves; deformation invariance of crystalline cohomology; De Rham cohomology; crystalline Weil group; convergence on isocrystals; absolute Hodge cycle; Tate conjecture for non supersingular K3 surfaces; rigid cohomology},
pages = {159-200},
title = {F-Isocrystales and De Rham Cohomology. I.},
url = {http://eudml.org/doc/143016},
volume = {72},
year = {1983},
}
TY - JOUR
AU - Berthelot, P.
AU - Ogus, A.
TI - F-Isocrystales and De Rham Cohomology. I.
JO - Inventiones mathematicae
PY - 1983
VL - 72
SP - 159
EP - 200
KW - relative crystalline cohomology sheaves; deformation invariance of crystalline cohomology; De Rham cohomology; crystalline Weil group; convergence on isocrystals; absolute Hodge cycle; Tate conjecture for non supersingular K3 surfaces; rigid cohomology
UR - http://eudml.org/doc/143016
ER -
Citations in EuDML Documents
top- Arthur Ogus, -crystals on schemes with constant log structure
- Robert E. Kottwitz, Isocrystals with additional structure
- B. Dwork, A. Ogus, Canonical liftings of jacobians
- Pierre Berthelot, Géométrie rigide et cohomologie des variétés algébriques de caractéristique
- Denis Petrequin, Classes de Chern et classes de cycles en cohomologie rigide
- Pierre Berthelot, Géométrie rigide et cohomologie des variétés algébriques de caractéristique p
- Pierre Berthelot, -modules arithmétiques. I. Opérateurs différentiels de niveau fini
- Bruno Chiarellotto, Weights in rigid cohomology applications to unipotent -isocrystals
- Wiesława Nizioł, Crystalline conjecture via -theory
- Alberto Arabia, Zoghman Mebkhout, Sur le Topos infinitésimal -adique d’un schéma lisse I
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.