Invariant measures exist under a summability condition for unimodal maps.
Tomasz Nowicki; Sebastian van Strien
Inventiones mathematicae (1991)
- Volume: 105, Issue: 1, page 123-136
- ISSN: 0020-9910; 1432-1297/e
Access Full Article
topHow to cite
topNowicki, Tomasz, and Strien, Sebastian van. "Invariant measures exist under a summability condition for unimodal maps.." Inventiones mathematicae 105.1 (1991): 123-136. <http://eudml.org/doc/143905>.
@article{Nowicki1991,
author = {Nowicki, Tomasz, Strien, Sebastian van},
journal = {Inventiones mathematicae},
keywords = {unimodal maps; iterations; negative Schwarzian derivative; critical value; invariant probability measure},
number = {1},
pages = {123-136},
title = {Invariant measures exist under a summability condition for unimodal maps.},
url = {http://eudml.org/doc/143905},
volume = {105},
year = {1991},
}
TY - JOUR
AU - Nowicki, Tomasz
AU - Strien, Sebastian van
TI - Invariant measures exist under a summability condition for unimodal maps.
JO - Inventiones mathematicae
PY - 1991
VL - 105
IS - 1
SP - 123
EP - 136
KW - unimodal maps; iterations; negative Schwarzian derivative; critical value; invariant probability measure
UR - http://eudml.org/doc/143905
ER -
Citations in EuDML Documents
top- Tomasz Nowicki, Some dynamical properties of S-unimodal maps
- Eduardo Colli, Marcio L. do Nascimento, Edson Vargas, Decay of geometry for Fibonacci critical covering maps of the circle
- Henk Bruin, Stefano Luzzatto, Sebastian Van Strien, Decay of correlations in one-dimensional dynamics
- Henk Bruin, Weixiao Shen, Sebastian Van Strien, Existence of unique SRB-measures is typical for real unicritical polynomial families
- Viviane Baladi, Daniel Smania, Linear response for smooth deformations of generic nonuniformly hyperbolic unimodal maps
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.