Geometry and topology of the boundary in the critical Neumann problem.
Journal für die reine und angewandte Mathematik (1994)
- Volume: 456, page 1-18
- ISSN: 0075-4102; 1435-5345/e
Access Full Article
topHow to cite
topMancini, G., and Adimurthi. "Geometry and topology of the boundary in the critical Neumann problem.." Journal für die reine und angewandte Mathematik 456 (1994): 1-18. <http://eudml.org/doc/153659>.
@article{Mancini1994,
author = {Mancini, G., Adimurthi},
journal = {Journal für die reine und angewandte Mathematik},
keywords = {Neumann or mixed boundary conditions; existence and multiplicity results; semilinear elliptic equations; critical nonlinearity},
pages = {1-18},
title = {Geometry and topology of the boundary in the critical Neumann problem.},
url = {http://eudml.org/doc/153659},
volume = {456},
year = {1994},
}
TY - JOUR
AU - Mancini, G.
AU - Adimurthi
TI - Geometry and topology of the boundary in the critical Neumann problem.
JO - Journal für die reine und angewandte Mathematik
PY - 1994
VL - 456
SP - 1
EP - 18
KW - Neumann or mixed boundary conditions; existence and multiplicity results; semilinear elliptic equations; critical nonlinearity
UR - http://eudml.org/doc/153659
ER -
Citations in EuDML Documents
top- Manuel del Pino, Monica Musso, Angela Pistoia, Super-critical boundary bubbling in a semilinear Neumann problem
- J. Chabrowski, Jianfu Yang, Multiple solutions of a nonlinear elliptic equation involving Neumann conditions and a critical Sobolev exponent
- Pierpaolo Esposito, Interior estimates for some semilinear elliptic problem with critical nonlinearity
- Olivier Rey, Juncheng Wei, Blowing up solutions for an elliptic Neumann problem with sub- or supercritical nonlinearity. Part II :
- J. Chabrowski, Mean curvature and least energy solutions for the critical Neumann problem with weight
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.