Existence of infinitely many homoclinic orbits in hamiltonian systems.
Mathematische Zeitschrift (1992)
- Volume: 209, Issue: 1, page 27-42
- ISSN: 0025-5874; 1432-1823
Access Full Article
topHow to cite
topSéré, Eric. "Existence of infinitely many homoclinic orbits in hamiltonian systems.." Mathematische Zeitschrift 209.1 (1992): 27-42. <http://eudml.org/doc/174347>.
@article{Séré1992,
author = {Séré, Eric},
journal = {Mathematische Zeitschrift},
keywords = {Hamiltonian systems; homoclinic orbits; chaos; variational problems; Palais-Smale condition; concentration-compactness},
number = {1},
pages = {27-42},
title = {Existence of infinitely many homoclinic orbits in hamiltonian systems.},
url = {http://eudml.org/doc/174347},
volume = {209},
year = {1992},
}
TY - JOUR
AU - Séré, Eric
TI - Existence of infinitely many homoclinic orbits in hamiltonian systems.
JO - Mathematische Zeitschrift
PY - 1992
VL - 209
IS - 1
SP - 27
EP - 42
KW - Hamiltonian systems; homoclinic orbits; chaos; variational problems; Palais-Smale condition; concentration-compactness
UR - http://eudml.org/doc/174347
ER -
Citations in EuDML Documents
top- Zhaoli Liu, Zhi-Qiang Wang, Multi-bump type nodal solutions having a prescribed number of nodal domains : I
- Massimiliano Berti, Heteroclinic solutions for perturbed second order systems
- P. H. Rabinowitz, E. Stredulinsky, On some results of Moser and of Bangert
- Enrico Serra, Massimo Tarallo, Susanna Terracini, On the existence of homoclinic solutions for almost periodic second order systems
- S. V. Bolotin, P. H. Rabinowitz, A variational construction of chaotic trajectories for a Hamiltonian system on a torus
- Fukun Zhao, Leiga Zhao, Yanheng Ding, Infinitely many solutions for asymptotically linear periodic Hamiltonian elliptic systems
- Éric Séré, Looking for the Bernoulli shift
- Antonio Ambrosetti, Vittorio Coti Zelati, Multiple homoclinic orbits for a class of conservative systems
- Francesca Alessio, Marta Calanchi, Homoclinic-type solutions for an almost periodic semilinear elliptic equation on
- Antonio Ambrosetti, Marino Badiale, Homoclinics : Poincaré-Melnikov type results via a variational approach
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.