Postprocessing schemes for some mixed finite elements

Rolf Stenberg

ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique (1991)

  • Volume: 25, Issue: 1, page 151-167
  • ISSN: 0764-583X

How to cite

top

Stenberg, Rolf. "Postprocessing schemes for some mixed finite elements." ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique 25.1 (1991): 151-167. <http://eudml.org/doc/193618>.

@article{Stenberg1991,
author = {Stenberg, Rolf},
journal = {ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique},
keywords = {mixed finite element approximations; Poisson's equation; biharmonic equation; postprocessing schemes},
language = {eng},
number = {1},
pages = {151-167},
publisher = {Dunod},
title = {Postprocessing schemes for some mixed finite elements},
url = {http://eudml.org/doc/193618},
volume = {25},
year = {1991},
}

TY - JOUR
AU - Stenberg, Rolf
TI - Postprocessing schemes for some mixed finite elements
JO - ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique
PY - 1991
PB - Dunod
VL - 25
IS - 1
SP - 151
EP - 167
LA - eng
KW - mixed finite element approximations; Poisson's equation; biharmonic equation; postprocessing schemes
UR - http://eudml.org/doc/193618
ER -

References

top
  1. [1] D. N. ARNOLD and F. BREZZI, Mixed and Nonconforming Finite Element Methods : Implementation, Postprocessing and Error Estimates, RAIRO, M2AN, Vol. 19, 1985, pp. 7-32. Zbl0567.65078MR813687
  2. [2] F. BREZZI, J. DOUGLAS, R. DURÁN and M. FORTIN, Mixed Finite Elements for Second Order Elliptic Problems in Three Variables, Numer. Math., Vol.51, 1987, pp. 237-250. Zbl0631.65107MR890035
  3. [3] I. BABUŠKA, J. E. OSBORN and J. PITKÄRANTA, Analysis of Mixed Methods using Mesh Dependent Norms, Math. Comp., Vol 35, 1980, pp. 1039-1062. Zbl0472.65083MR583486
  4. [4] F. BREZZI, J. DOUGLAS and L. D. MARINI, Two Families of Mixed Finite Elements for Second Order Elliptic Equations, Numer. Math., Vol.47, 1985, pp. 19-34. Zbl0592.65073MR808322
  5. [5] P. G. ClARLET, The Finite Element Method for Elliptic Problems, North-Holland, 1978. Zbl0383.65058MR520174
  6. [6] M. I. COMODI, The Hellan-Herrmann-Johnson Method: Estimates for the Lagrange Multiplier and Postprocessing, Math. Comp. Vol. 52, 1989, pp. 17-29. Zbl0665.65082MR946601
  7. [7] J. DOUGLAS and J. E. SANTOS, Approximation of Waves in Composite Media, The Mathematics of Finite Elements and Applications VI. MAFELAP 1987, J. R. Whiteman (Ed.), Academic Press, 55-74. Zbl0682.73028MR956888
  8. [8] R. S. FALK and J. E. OSBORN, Error Estimates for Mixed Methods, RAIRO,Anal. Numer., Vol 14, 1980, pp. 249-278. Zbl0467.65062MR592753
  9. [9] V. GlRAULT and P. A. RAVIART, Finite Element Methods for Navier-Stokes Equations. Theory and Algorithms, Springer 1986. Zbl0585.65077MR540128
  10. [10] K. HELLAN, Analysis of Elastic Plates in Flexure by a Simplified Finite Element Method, Acta Polytechnica Scandinavica, Ci 46, Trondheim, 1967. Zbl0237.73046
  11. [11] L. HERRMANN, Finite Element Bending Analysis for Plates, J. Eng. Div. ASCE, a3, EM5, 1967, pp. 49-83. 
  12. [12] C. JOHNSON, On the Convergence of a Mixed Finite Method for Plate Bending Problems, Numer. Math. Vol. 21, 1973, pp. 43-62. Zbl0264.65070MR388807
  13. [13] L. D. MARINI and A. SAVINI, Accurate Computation of Electric Field in Reverse Biased Semiconductor Devices. A Mixed Finite Element Approach, Compel, Vol. 3, 1984, pp. 123-135. Zbl0619.65120
  14. [14] J. C. NEDELEC, Mixed Finite Elements in R3, Numer. Math., Vol. 35, 1980, pp. 315-341. Zbl0419.65069MR592160
  15. [15] P. A. RAVIART and J. M. THOMAS, A Mixed Finite Element Method for 2nd Order Elliptic Problems, Proceedings of the Symposium on the Mathematical Aspects of the Finite Element Method. Lecture Notes in Mathematics 606, Springer 1977, pp. 292-315. Zbl0362.65089MR483555
  16. [16] R. STENBERG, On the Construction of Optimal Mixed Finite Element Methods for the Linear Elasticity Problem, Numer. Math., Vol. 48, 1986, pp. 447-462. Zbl0563.65072MR834332
  17. [17] R. STENBERG, On the Postprocessing of Mixed Equilibrium Finite Element Methods, Numerical Techniques in Continuüm Mechanics. Proceedings of the Second GAMM-Seminar, Kiel, January 17 to 19, 1986. W. Hackbusch, K. Witsch (Eds.), Vieweg, Braunschweig 1987, pp. 102-109. Zbl0645.73033
  18. [18] M. WHEELER and R. GONZALES, Mixed Finite Element Methods for Petroleum Reservoir Simulation, Computing Methods in Applied Sciences and Engineering, VI, R. Glowinski, J. L. Lions (Eds.), North-Holland 1984, pp. 639-658. Zbl0598.76102

Citations in EuDML Documents

top
  1. L. Beirão da Veiga, A Local Error Estimator for the Mimetic Finite Difference Method
  2. Zhangxin Chen, Expanded mixed finite element methods for quasilinear second order elliptic problems, II
  3. Aihui Zhou, Global superconvergence approximations of the mixed finite element method for the Stokes problem and the linear elasticity equation
  4. Wei Chen, Qun Lin, Approximation of an eigenvalue problem associated with the Stokes problem by the stream function-vorticity-pressure method
  5. Zhangxin Chen, Expanded mixed finite element methods for linear second-order elliptic problems, I

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.